Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Entomol ; 52(1): 47-55, 2023 02 17.
Article in English | MEDLINE | ID: mdl-36383202

ABSTRACT

Drosophila suzukii Matsumura, spotted-wing drosophila, is a major pest of small fruits and cherries and often managed with conventional insecticides. Our previous work found that erythritol, a nonnutritive polyol, has insecticidal properties to D. suzukii. Two formulations of erythritol (1.5M), with 0.5M sucrose or 0.1M sucralose, are most effective at killing D. suzukii. In this study, we investigated the nontarget effects of these erythritol formulations on honey bee Apis mellifera Linnaeus larvae, a pupal parasitoid of D. suzukii, Pachycrepoideus vindemiae Rondani, and western yellow jacket, Vespula pensylvanica Saussure. We directly exposed honey bee larvae by adding a high dose (2 µl) to larval cells and found no significant mortality from either formulation compared to the water control. Pachycrepoideus vindemiae may encounter erythritol in field settings when host plants of D. suzukii are sprayed. The erythritol+sucralose formulation was more detrimental than erythritol+sucrose to P. vindemiae, however, this effect was greatly reduced within a 21-d period when a floral source was present. Since yellow jackets are a nuisance pest and were attracted to the erythritol formulations in recent field trials, we tested adult V. pensylvanica survival with continuous consumption of these formulations in the laboratory. We found no detectable detriment from either formulation, compared to the sucrose control. Overall, both erythritol formulations caused minimal nontarget effects on honey bee larvae, P. vindemiae parasitoids, and western yellow jackets.


Subject(s)
Insecticides , Wasps , Bees , Animals , Drosophila , Larva , Pupa , Sugars , Insecticides/toxicity , Erythritol/pharmacology , Sucrose/pharmacology , Insect Control
2.
Neurosci Res ; 170: 59-65, 2021 Sep.
Article in English | MEDLINE | ID: mdl-32987087

ABSTRACT

The endotoxin lipopolysaccharides (LPS), secreted from gram-negative bacteria, has direct effects on synaptic transmission independent of systemic secondary cytokine responses. High concentration of LPS (500 µg/mL) from Serratia marcescens increased synaptic efficacy at glutamatergic low-output synapses more than for high-output synapses. Over an hour of exposure was not toxic to the preparation and continued to enhance synaptic transmission. A small but significant rapid hyperpolarization of the post-synaptic cells occurred, in addition to a slower enhancement of in the amplitude of evoked excitatory junction potentials. LPS may promote reserve pool vesicles to the readily releasable pool for low-output synapses. The action of LPS at the glutamatergic synapses of the crayfish neuromuscular junction is unique in promoting synaptic transmission as compared to other glutamatergic synapses in Drosophila and mammals, where synaptic transmission is depressed.


Subject(s)
Lipopolysaccharides , Synaptic Vesicles , Animals , Endotoxins , Lipopolysaccharides/pharmacology , Synapses , Synaptic Transmission
3.
Biology (Basel) ; 9(8)2020 Aug 06.
Article in English | MEDLINE | ID: mdl-32781679

ABSTRACT

The release of the endotoxin lipopolysaccharides (LPS) from gram-negative bacteria is key in the induction of the downstream cytokine release from cells targeting cells throughout the body. However, LPS itself has direct effects on cellular activity and can alter synaptic transmission. Animals experiencing septicemia are generally in a critical state and are often treated with various pharmacological agents. Since antidepressants related to the serotonergic system have been shown to have a positive outcome for septicemic conditions impacting the central nervous system, the actions of serotonin (5-HT) on neurons also exposed to LPS were investigated. At the model glutamatergic synapse of the crayfish neuromuscular junction (NMJ), 5-HT primarily acts through a 5-HT2A receptor subtype to enhance transmission to the motor neurons. LPS from Serratia marcescens also enhances transmission at the crayfish NMJ but by a currently unknown mechanism. LPS at 100 µg/mL had no significant effect on transmission or on altering the response to 5-HT. LPS at 500 µg/mL increased the amplitude of the evoked synaptic excitatory junction potential, and 5-HT in combination with 500 µg/mL LPS continued to promote enhanced transmission. The preparations maintained responsiveness to serotonin in the presence of low or high concentrations of LPS.

4.
Insects ; 10(4)2019 Apr 22.
Article in English | MEDLINE | ID: mdl-31013568

ABSTRACT

The effect of bacterial sepsis on animal behavior and physiology is complex due to direct and indirect actions. The most common form of bacterial sepsis in humans is from gram-negative bacterial strains. The endotoxin (lipopolysaccharide, LPS) and/or associated peptidoglycans from the bacteria are the key agents to induce an immune response, which then produces a cascade of immunological consequences. However, there are direct actions of LPS and associated peptidoglycans on cells which are commonly overlooked. This study showed behavioral and neural changes in larval Drosophila fed commercially obtained LPS from Serratia marcescens. Locomotor behavior was not altered, but feeding behavior increased and responses to sensory tactile stimuli were decreased. In driving a sensory-central nervous system (CNS)-motor neural circuit in in-situ preparations, direct application of commercially obtained LPS initially increased evoked activity and then decreased and even stopped evoked responses in a dose-dependent manner. With acute LPS and associated peptidoglycans exposure (10 min), the depressed neural responses recovered within a few minutes after removal of LPS. Commercially obtained LPS induces a transitory hyperpolarization of the body wall muscles within seconds of exposure and alters activity within the CNS circuit. Thus, LPS and/or associated peptidoglycans have direct effects on body wall muscle without a secondary immune response.

5.
Article in English | MEDLINE | ID: mdl-30448591

ABSTRACT

The bacterial endotoxins, lipopolysaccharides (LPS), are known to have direct effects on mammalian heart cells; thus, LPS is likely to have some effects in other cardiac models. Drosophila melanogaster was used since it serves as a model for cardiac physiology. Larvae of blow flies (Phaenicia sericata) commonly used as therapy for debriding dead tissue, are exposed to high levels of bacterial endotoxins, but their mechanisms of LPS resistance are not entirely understood. Comparative effects of LPS on heart rate (HR) were examined for both Drosophila and blowfly larvae. Acute 10-min direct exposure of in situ heart tubes with saline containing 1, 100, and 500 µg/ml LPS from two common bacterial stains (Pseudomonas aeruginosa and Serratia marcescens) revealed a dose-dependent effect. The effects differed between the two fly models. Larval hearts of Drosophila stopped rapidly in low Ca2+ containing saline, but the hearts of blow flies appear unaffected for >30 min. S. marcescens increased HR initially in Drosophila followed by a reduction for low and high doses, but no change was observed in larvae of blow flies. Whereas P. aeruginosa at a high dose decreased HR in larvae of Drosophila but increased HR in larvae of blow flies. The goal of this study is to better the understanding in the direct action of LPS on HR. Knowing the acute and direct actions of LPS exposure on HR in different species of larvae may aid in understanding the underlying mechanisms in other animals during septicemia.


Subject(s)
Diptera/drug effects , Heart/drug effects , Lipopolysaccharides/toxicity , Animals , Larva/drug effects , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...