Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 115(20): 5077-5082, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29720443

ABSTRACT

From organic electronics to biological systems, understanding the role of intermolecular interactions between spin pairs is a key challenge. Here we show how such pairs can be selectively addressed with combined spin and optical sensitivity. We demonstrate this for bound pairs of spin-triplet excitations formed by singlet fission, with direct applicability across a wide range of synthetic and biological systems. We show that the site sensitivity of exchange coupling allows distinct triplet pairs to be resonantly addressed at different magnetic fields, tuning them between optically bright singlet ([Formula: see text]) and dark triplet quintet ([Formula: see text]) configurations: This induces narrow holes in a broad optical emission spectrum, uncovering exchange-specific luminescence. Using fields up to 60 T, we identify three distinct triplet-pair sites, with exchange couplings varying over an order of magnitude (0.3-5 meV), each with its own luminescence spectrum, coexisting in a single material. Our results reveal how site selectivity can be achieved for organic spin pairs in a broad range of systems.

2.
Soft Matter ; 10(34): 6485-90, 2014 Sep 14.
Article in English | MEDLINE | ID: mdl-25048276

ABSTRACT

We report control over the phase behavior of CdS nanorods via the solvent and acidity. CdS nanorods were synthesized using alkane phosphonic acid ligands, which were replaced after synthesis by a series of aromatic ligands. Change of ligand enabled us to cast films from different solvents. By replacing toluene with ethanol or water the rod-rod interactions dominate over rod-substrate interactions, thereby favoring simple hexagonal ordering (2D). When dispersed in water, a net electrostatic charge on the nanorods could be induced by deprotonating the ligands at high pH. This net charge favors 2D nematic ordering over homeotropic ordering of the nanorods on a substrate. A calculation of the van der Waals and electrostatic interactions is presented that explains the observed influence of solvent and pH.

3.
Opt Express ; 19(12): 11256-63, 2011 Jun 06.
Article in English | MEDLINE | ID: mdl-21716355

ABSTRACT

Localized plasmon resonances of spherical nanovoid arrays strongly enhance solar cell performance by a factor of 3.5 in external quantum efficiency at plasmonic resonances, and a four-fold enhancement in overall power conversion efficiency. Large area substrates of silver nanovoids are electrochemically templated through self-assembled colloidal spheres and organic solar cells fabricated on top. Our design represents a new class of plasmonic photovoltaic enhancement: that of localized plasmon-enhanced absorption within nanovoid structures. Angularly-resolved spectra demonstrate strong localized Mie plasmon modes within the nanovoids. Theoretical modelling shows varied spatial dependence of light intensity within the void region suggesting a first possible route towards Third Generation plasmonic photovoltaics.

4.
J Chem Phys ; 129(11): 114903, 2008 Sep 21.
Article in English | MEDLINE | ID: mdl-19044985

ABSTRACT

A Monte Carlo model is used to examine geminate pair dissociation in polymer-polymer photovoltaic devices. It is found that increasing one or both carrier mobilities aids geminate separation yield eta(GS) particularly at low fields. This, in turn, leads to improved maximum power output from polymer-polymer blend photovoltaics, even when carrier mobilities are unbalanced by a factor of 10. The dynamic behaviors of geminate charges that eventually separate and recombine are examined for the first time. It is shown that geminate pairs in a bilayer become effectively free when separated by approximately 4 nm, which is far smaller than the thermal capture radius of 16 nm here. This may lead one to expect that eta(GS) would not be limited by the separation allowed by the morphology once the domain size has increased above 4 nm. In fact it is found that eta(GS) in a blend improves continuously as the average domain size increases from 4 to 16 nm. We show that although a small degree of separation may be available in a blend, the limited number of possible routes to further separation makes charge pairs in blends more susceptible to recombination than charge pairs in a bilayer.

5.
Nanotechnology ; 19(42): 424012, 2008 Oct 22.
Article in English | MEDLINE | ID: mdl-21832672

ABSTRACT

We investigate the transient photocurrents of organic photovoltaic devices in response to a sharp turn-on of illumination, by numerical modeling of the drift-diffusion equations. We show that the photocurrent turn-on dynamics are determined not only by the transport dynamics of free charges, but also by the time required for the population of geminate charge pairs to reach its steady-state value. The dissociation probability of a geminate charge pair is found to be a key parameter in determining the device performance, not only by controlling the efficiency at low intensities, but also in determining the fate of charge pairs formed by bimolecular recombination at high intensities. Bimolecular recombination is shown to reduce the turn-on time at high intensities, since the typical distance traveled by a charge pair is reduced.

6.
Phys Rev Lett ; 91(21): 219702;discussion 219703, 2003 Nov 21.
Article in English | MEDLINE | ID: mdl-14683345
7.
Philos Trans A Math Phys Eng Sci ; 361(1803): 363-77; discussion 377, 2003 Feb 15.
Article in English | MEDLINE | ID: mdl-12639389

ABSTRACT

Application of semiconductor nanocrystals in optoelectronic devices requires an understanding not only of their emission and absorption properties, but also of the processes of charge injection and transport in nanocrystalline films. Here, we present measurements of the electrical properties of nanocrystalline films and of blends of nanocrystals with conjugated polymers. We also describe the attachment of nanocrystals to semiconductor surfaces, and we investigate the emission of nanocrystalline films in microcavity structures and at high excitation intensities.

SELECTION OF CITATIONS
SEARCH DETAIL
...