Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Biol ; 30(5): 802-814.e8, 2020 03 09.
Article in English | MEDLINE | ID: mdl-32155414

ABSTRACT

Many organisms exhibit visually striking spotted or striped pigmentation patterns. Developmental models predict that such spatial patterns can form when a local autocatalytic feedback loop and a long-range inhibitory feedback loop interact. At its simplest, this self-organizing network only requires one self-activating activator that also activates a repressor, which inhibits the activator and diffuses to neighboring cells. However, the molecular activators and inhibitors fully fitting this versatile model remain elusive in pigmentation systems. Here, we characterize an R2R3-MYB activator and an R3-MYB repressor in monkeyflowers (Mimulus). Through experimental perturbation and mathematical modeling, we demonstrate that the properties of these two proteins correspond to an activator-inhibitor pair in a two-component, reaction-diffusion system, explaining the formation of dispersed anthocyanin spots in monkeyflower petals. Notably, disrupting this pattern impacts pollinator visitation. Thus, subtle changes in simple activator-inhibitor systems are likely essential contributors to the evolution of the remarkable diversity of pigmentation patterns in flowers.


Subject(s)
Mimulus/physiology , Pigments, Biological/genetics , Plant Proteins/genetics , Proto-Oncogene Proteins c-myb/genetics , Transcription Factors/genetics , Mimulus/genetics , Pigmentation/genetics , Plant Proteins/metabolism , Proto-Oncogene Proteins c-myb/metabolism , Transcription Factors/metabolism
2.
Am Nat ; 194(4): 541-557, 2019 10.
Article in English | MEDLINE | ID: mdl-31490725

ABSTRACT

While native populations are often adapted to historical biotic and abiotic conditions at their home site, populations from other locations in the range may be better adapted to current conditions due to changing climates or extreme conditions in a single year. We examine whether local populations of a widespread species maintain a relative advantage over distant populations that have evolved at sites better matching the current climate. Specifically, we grew lines derived from low- and high-elevation annual populations in California and Oregon of the common monkeyflower (Erythranthe guttata) and conducted phenotypic selection analyses in low- and high-elevation common gardens in Oregon to examine relative fitness and the traits mediating relative fitness. Californian low-elevation populations have the highest relative fitness at the low-elevation site, and Californian high-elevation populations have the highest relative fitness at the high-elevation site. Relative fitness differences are mediated by selection for properly timed transitions to flowering, with selection favoring more rapid growth rates at the low-elevation site and greater vegetative biomass prior to flowering at the high-elevation site. Fitness advantages for Californian plants occur despite incurring higher herbivory at both sites than the native Oregonian plants. Our findings suggest that a lag in adaptation causes maladaptation in extreme years that may be more prevalent in future climates, but local populations still have high growth rates and thus are not yet threatened.


Subject(s)
Adaptation, Biological , Climate , Herbivory , Lamiales/genetics , Lamiales/physiology , Altitude , California , Flowers/growth & development , Genetic Fitness , Lamiales/growth & development , Plant Components, Aerial/growth & development
3.
Ann Bot ; 116(2): 213-23, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26070644

ABSTRACT

BACKGROUND AND AIMS: The genetic basis of leaf shape has long interested botanists because leaf shape varies extensively across the plant kingdom and this variation is probably adaptive. However, knowledge of the genetic architecture of leaf shape variation in natural populations remains limited. This study examined the genetic architecture of leaf shape diversification among three edaphic specialists in the Mimulus guttatus species complex. Lobed and narrow leaves have evolved from the entire, round leaves of M. guttatus in M. laciniatus, M. nudatus and a polymorphic serpentine M. guttatus population (M2L). METHODS: Bulk segregant analysis and next-generation sequencing were used to map quantitative trait loci (QTLs) that underlie leaf shape in an M. laciniatus × M. guttatus F2 population. To determine whether the same QTLs contribute to leaf shape variation in M. nudatus and M2L, F2s from M. guttatus × M. nudatus and lobed M2L × unlobed M. guttatus crosses were genotyped at QTLs from the bulk segregant analysis. KEY RESULTS: Narrow and lobed leaf shapes in M. laciniatus, M. nudatus and M. guttatus are controlled by overlapping genetic regions. Several promising leaf shape candidate genes were found under each QTL. CONCLUSIONS: The evolution of divergent leaf shape has taken place multiple times in the M. guttatus species complex and is associated with the occupation of dry, rocky environments. The genetic architecture of elongated and lobed leaves is similar across three species in this group. This may indicate that parallel genetic evolution from standing variation or new mutations is responsible for the putatively adaptive leaf shape variation in Mimulus.


Subject(s)
Biological Evolution , Mimulus/anatomy & histology , Mimulus/genetics , Plant Leaves/anatomy & histology , Plant Leaves/genetics , Chromosome Mapping , Crosses, Genetic , Genes, Plant , Genetic Association Studies , Phenotype , Quantitative Trait Loci/genetics , Species Specificity
4.
New Phytol ; 206(1): 152-165, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25407964

ABSTRACT

Examining how morphology, life history and physiology vary along environmental clines can reveal functional insight into adaptations to climate and thus inform predictions about evolutionary responses to global change. Widespread species occurring over latitudinal and altitudinal gradients in seasonal water availability are excellent systems for investigating multivariate adaptation to drought stress. Under common garden conditions, we characterized variation in 27 traits for 52 annual populations of Mimulus guttatus sampled from 10 altitudinal transects. We also assessed variation in the critical photoperiod for flowering and surveyed neutral genetic markers to control for demography when analyzing clinal patterns. Many drought escape (e.g. flowering time) and drought avoidance (e.g. specific leaf area, succulence) traits exhibited geographic or climatic clines, which often remained significant after accounting for population structure. Critical photoperiod and flowering time in glasshouse conditions followed distinct clinal patterns, indicating different aspects of seasonal phenology confer adaptation to unique agents of selection. Although escape and avoidance traits were negatively correlated range-wide, populations from sites with short growing seasons produced both early flowering and dehydration avoidance phenotypes. Our results highlight how abundant genetic variation in the component traits that build multivariate adaptations to drought stress provides flexibility for intraspecific adaptation to diverse climates.


Subject(s)
Adaptation, Physiological , Mimulus/physiology , Stress, Physiological , Altitude , Biological Evolution , Climate , Droughts , Environment , Flowers/genetics , Flowers/physiology , Flowers/radiation effects , Genetic Markers/genetics , Genetic Variation , Mimulus/genetics , Mimulus/radiation effects , Phenotype , Photoperiod , Plant Leaves/genetics , Plant Leaves/physiology , Plant Leaves/radiation effects , Seasons , Selection, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...