Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 15(3): e0230741, 2020.
Article in English | MEDLINE | ID: mdl-32214353

ABSTRACT

The accurate and rapid identification of insect pests is an important step in the prevention and control of outbreaks in areas that are otherwise pest free. The potato-tomato psyllid Bactericera cockerelli (Sulc, 1909) is the main vector of 'Candidatus Liberibacter solanacearum' on potato and tomato crops in North America and New Zealand; and is considered a threat for introduction in Europe and other pest-free regions. This study describes the design and validation of the first species-specific TaqMan probe-based real-time PCR assay, targeting the ITS2 gene region of B. cockerelli. The assay detected B. cockerelli genomic DNA from adults, immatures, and eggs, with 100% accuracy. This assay also detected DNA from cloned plasmids containing the ITS2 region of B. cockerelli with 100% accuracy. The assay showed 0% false positives when tested on genomic and cloned DNA from 73 other psyllid species collected from across Europe, New Zealand, Mexico and the USA. This included 8 other species in the Bactericera genus and the main vectors of 'Candidatus Liberibacter solanacearum' worldwide. The limit of detection for this assay at optimum conditions was 0.000001ng DNA (~200 copies) of ITS2 DNA which equates to around a 1:10000 dilution of DNA from one single adult specimen. This assay is the first real-time PCR based method for accurate, robust, sensitive and specific identification of B. cockerelli from all life stages. It can be used as a surveillance and monitoring tool to further study this important crop pest and to aid the prevention of outbreaks, or to prevent their spread after establishment in new areas.


Subject(s)
DNA Barcoding, Taxonomic , Databases, Genetic , Hemiptera/classification , Hemiptera/genetics , Real-Time Polymerase Chain Reaction/methods , Solanum lycopersicum , Animals , Computational Biology , Hemiptera/physiology , Sequence Analysis, DNA , Time Factors
2.
Ann Appl Biol ; 168(3): 435-449, 2016 May.
Article in English | MEDLINE | ID: mdl-27570248

ABSTRACT

Crop protection is an integral part of establishing food security, by protecting the yield potential of crops. Cereal aphids cause yield losses by direct damage and transmission of viruses. Some wild relatives of wheat show resistance to aphids but the mechanisms remain unresolved. In order to elucidate the location of the partial resistance to the bird cherry-oat aphid, Rhopalosiphum padi, in diploid wheat lines of Triticum monococcum, we conducted aphid performance studies using developmental bioassays and electrical penetration graphs, as well as metabolic profiling of partially resistant and susceptible lines. This demonstrated that the partial resistance is related to a delayed effect on the reproduction and development of R. padi. The observed partial resistance is phloem based and is shown by an increase in number of probes before the first phloem ingestion, a higher number and duration of salivation events without subsequent phloem feeding and a shorter time spent phloem feeding on plants with reduced susceptibility. Clear metabolic phenotypes separate partially resistant and susceptible lines, with the former having lower levels of the majority of primary metabolites, including total carbohydrates. A number of compounds were identified as being at different levels in the susceptible and partially resistant lines, with asparagine, octopamine and glycine betaine elevated in less susceptible lines without aphid infestation. In addition, two of those, asparagine and octopamine, as well as threonine, glutamine, succinate, trehalose, glycerol, guanosine and choline increased in response to infestation, accumulating in plant tissue localised close to aphid feeding after 24 h. There was no clear evidence of systemic plant response to aphid infestation.

SELECTION OF CITATIONS
SEARCH DETAIL
...