Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(25): e2319903121, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38870058

ABSTRACT

Biofilm formation and surface attachment in multiple Alphaproteobacteria is driven by unipolar polysaccharide (UPP) adhesins. The pathogen Agrobacterium tumefaciens produces a UPP adhesin, which is regulated by the intracellular second messenger cyclic diguanylate monophosphate (c-di-GMP). Prior studies revealed that DcpA, a diguanylate cyclase-phosphodiesterase, is crucial in control of UPP production and surface attachment. DcpA is regulated by PruR, a protein with distant similarity to enzymatic domains known to coordinate the molybdopterin cofactor (MoCo). Pterins are bicyclic nitrogen-rich compounds, several of which are produced via a nonessential branch of the folate biosynthesis pathway, distinct from MoCo. The pterin-binding protein PruR controls DcpA activity, fostering c-di-GMP breakdown and dampening its synthesis. Pterins are excreted, and we report here that PruR associates with these metabolites in the periplasm, promoting interaction with the DcpA periplasmic domain. The pteridine reductase PruA, which reduces specific dihydro-pterin molecules to their tetrahydro forms, imparts control over DcpA activity through PruR. Tetrahydromonapterin preferentially associates with PruR relative to other related pterins, and the PruR-DcpA interaction is decreased in a pruA mutant. PruR and DcpA are encoded in an operon with wide conservation among diverse Proteobacteria including mammalian pathogens. Crystal structures reveal that PruR and several orthologs adopt a conserved fold, with a pterin-specific binding cleft that coordinates the bicyclic pterin ring. These findings define a pterin-responsive regulatory mechanism that controls biofilm formation and related c-di-GMP-dependent phenotypes in A. tumefaciens and potentially acts more widely in multiple proteobacterial lineages.


Subject(s)
Agrobacterium tumefaciens , Bacterial Proteins , Biofilms , Cyclic GMP , Pterins , Biofilms/growth & development , Agrobacterium tumefaciens/metabolism , Agrobacterium tumefaciens/genetics , Pterins/metabolism , Cyclic GMP/metabolism , Cyclic GMP/analogs & derivatives , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Proteobacteria/metabolism , Proteobacteria/genetics , Molybdenum Cofactors , Periplasm/metabolism , Periplasmic Proteins/metabolism , Periplasmic Proteins/genetics , Periplasmic Binding Proteins/metabolism , Periplasmic Binding Proteins/genetics , Gene Expression Regulation, Bacterial
2.
ACS Chem Biol ; 19(2): 462-470, 2024 02 16.
Article in English | MEDLINE | ID: mdl-38261537

ABSTRACT

Polymicrobial biofilms are ubiquitous, and the complex interspecies interactions within them are cryptic. We discovered the chemical foundation of antagonistic interactions in a model dual-species biofilm in which Pseudomonas aeruginosa inhibits the biofilm formation of Agrobacterium tumefaciens. Three known siderophores produced by P. aeruginosa (pyoverdine, pyochelin, and dihydroaeruginoic acid) were each capable of inhibiting biofilm formation. Surprisingly, a mutant that was incapable of producing these siderophores still secreted an antibiofilm metabolite. We discovered that this inhibitor was N5-formyl-N5-hydroxy-l-ornithine (fOHOrn)─a precursor in pyoverdine biosynthesis. Unlike the siderophores, this inhibitor did not appear to function via extracellular metal sequestration. In addition to this discovery, the compensatory overproduction of a new biofilm inhibitor illustrates the risk of pleiotropy in genetic knockout experiments. In total, this work lends new insight into the chemical nature of dual-species biofilm regulation and reveals a new naturally produced inhibitor of A. tumefaciens biofilm formation.


Subject(s)
Biofilms , Siderophores , Siderophores/metabolism , Pseudomonas aeruginosa/metabolism , Metals/metabolism , Biological Transport
3.
bioRxiv ; 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-38014264

ABSTRACT

Biofilm formation and surface attachment in multiple Alphaproteobacteria is driven by unipolar polysaccharide (UPP) adhesins. The pathogen Agrobacterium tumefaciens produces a UPP adhesin, which is regulated by the intracellular second messenger cyclic diguanylate monophosphate (cdGMP). Prior studies revealed that DcpA, a diguanylate cyclase-phosphodiesterase (DGC-PDE), is crucial in control of UPP production and surface attachment. DcpA is regulated by PruR, a protein with distant similarity to enzymatic domains known to coordinate the molybdopterin cofactor (MoCo). Pterins are bicyclic nitrogen-rich compounds, several of which are formed via a non-essential branch of the folate biosynthesis pathway, distinct from MoCo. The pterin-binding protein PruR controls DcpA activity, fostering cdGMP breakdown and dampening its synthesis. Pterins are excreted and we report here that PruR associates with these metabolites in the periplasm, promoting interaction with the DcpA periplasmic domain. The pteridine reductase PruA, which reduces specific dihydro-pterin molecules to their tetrahydro forms, imparts control over DcpA activity through PruR. Tetrahydromonapterin preferentially associates with PruR relative to other related pterins, and the PruR-DcpA interaction is decreased in a pruA mutant. PruR and DcpA are encoded in an operon that is conserved amongst multiple Proteobacteria including mammalian pathogens. Crystal structures reveal that PruR and several orthologs adopt a conserved fold, with a pterin-specific binding cleft that coordinates the bicyclic pterin ring. These findings define a new pterin-responsive regulatory mechanism that controls biofilm formation and related cdGMP-dependent phenotypes in A. tumefaciens and is found in multiple additional bacterial pathogens.

4.
J Bacteriol ; 205(10): e0016623, 2023 10 26.
Article in English | MEDLINE | ID: mdl-37756166

ABSTRACT

The ninth American Society for Microbiology Conference on Biofilms was convened in-person on 13-17 November 2022 in Charlotte, NC. As the first of these conferences since prior to the start of the COVID-19 pandemic, the energy among the participants of the conference was clear, and the meeting was a tremendous success. The mixture of >330 oral and poster presentations resoundingly embodied the vitality of biofilm research across a wide range of topics and multiple scientific disciplines. Special activities, including a pre-conference symposium for early career researchers, further enhanced the attendee experience. As a general theme, the conference was deliberately structured to provide high levels of participation and engagement among early career scientists.


Subject(s)
Pandemics , Societies, Scientific , Humans , United States , Biofilms
5.
Annu Rev Microbiol ; 77: 131-148, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37040790

ABSTRACT

The ChvG-ChvI two-component system is conserved among multiple Alphaproteobacteria. ChvG is a canonical two-component system sensor kinase with a single large periplasmic loop. Active ChvG directs phosphotransfer to its cognate response regulator ChvI, which controls transcription of target genes. In many alphaproteobacteria, ChvG is regulated by a third component, a periplasmic protein called ExoR, that maintains ChvG in an inactive state through direct interaction. Acidic pH stimulates proteolysis of ExoR, unfettering ChvG-ChvI to control its regulatory targets. Activated ChvI among different alphaproteobacteria controls a broad range of cellular processes, including symbiosis and virulence, exopolysaccharide production, biofilm formation, motility, type VI secretion, cellular metabolism, envelope composition, and growth. Low pH is a virulence signal in Agrobacterium tumefaciens, but in other systems, conditions that cause envelope stress may also generally activate ChvG-ChvI. There is mounting evidence that these regulators influence diverse aspects of bacterial physiology, including but not limited to host interactions.


Subject(s)
Agrobacterium tumefaciens , Bacterial Proteins , Bacterial Proteins/metabolism , Agrobacterium tumefaciens/genetics , Agrobacterium tumefaciens/metabolism , Signal Transduction/genetics , Symbiosis
6.
Microbiol Resour Announc ; 12(2): e0111922, 2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36645284

ABSTRACT

A broad host range (BHR)-inducible T7 RNA polymerase system was developed, enabling induction with isopropyl-ß-d-thiogalactopyranoside (IPTG), similar to the Escherichia coli strain BL21(DE3) protocol, but it is now applicable in a wide range of bacteria. This system allows for high protein yields and purification from diverse Gram-negative bacteria, including the native host.

7.
Infect Immun ; 80(3): 914-20, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22232190

ABSTRACT

Escherichia coli O157:H7 causes food and waterborne enteric infections that can result in hemorrhagic colitis and life-threatening hemolytic uremic syndrome. Intimate adherence of the bacteria to intestinal epithelial cells is mediated by intimin, but E. coli O157:H7 also possess several other putative adhesins, including curli and two operons that encode long polar fimbriae (Lpf). To assess the importance of Lpf for intestinal colonization, we performed competition experiments between E. coli O157:H7 and an isogenic ΔlpfA1 ΔlpfA2 double mutant in the infant rabbit model. The mutant was outcompeted in the ileum, cecum, and midcolon, suggesting that Lpf contributes to intestinal colonization. In contrast, the ΔlpfA1 ΔlpfA2 mutant showed increased adherence to colonic epithelial cells in vitro. Transmission electron microscopy revealed curli-like structures on the surface of the ΔlpfA1 ΔlpfA2 mutant, and the presence of curli was confirmed by Congo red binding, immunogold-labeling electron microscopy, immunoblotting, and quantitative real-time reverse transcription-PCR (qRT-PCR) measuring csgA expression. However, deletion of csgA, which encodes the major curli subunit, does not appear to affect intestinal colonization. In addition to suggesting that Lpf can contribute to EHEC intestinal colonization, our observations indicate that the regulatory pathways governing the expression of Lpf and curli are interdependent.


Subject(s)
Adhesins, Bacterial/metabolism , Bacterial Adhesion , Bacterial Proteins/metabolism , Escherichia coli O157/pathogenicity , Escherichia coli Proteins/metabolism , Fimbriae Proteins/metabolism , Fimbriae, Bacterial/metabolism , Adhesins, Bacterial/genetics , Adhesins, Bacterial/ultrastructure , Animals , Animals, Newborn , Bacterial Proteins/genetics , Cecum/microbiology , Cell Line , Cell Surface Extensions/ultrastructure , Colon/microbiology , Epithelial Cells/microbiology , Escherichia coli O157/genetics , Escherichia coli O157/ultrastructure , Escherichia coli Proteins/genetics , Fimbriae Proteins/genetics , Fimbriae, Bacterial/genetics , Fimbriae, Bacterial/ultrastructure , Gene Deletion , Gene Expression Profiling , Humans , Ileum/microbiology , Rabbits
8.
Antimicrob Agents Chemother ; 55(12): 5469-74, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21947394

ABSTRACT

AvR2-V10.3 is an engineered R-type pyocin that specifically kills Escherichia coli O157, an enteric pathogen that is a major cause of food-borne diarrheal disease. New therapeutics to counteract E. coli O157 are needed, as currently available antibiotics can exacerbate the consequences of infection. We show here that orogastric administration of AvR2-V10.3 can prevent or ameliorate E. coli O157:H7-induced diarrhea and intestinal inflammation in an infant rabbit model of infection when the compound is administered either in a postexposure prophylactic regimen or after the onset of symptoms. Notably, administration of AvR2-V10.3 also reduces bacterial carriage and fecal shedding of this pathogen. Our findings support the further development of pathogen-specific R-type pyocins as a way to treat enteric infections.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Diarrhea/drug therapy , Diarrhea/prevention & control , Escherichia coli O157/drug effects , Pyocins/therapeutic use , Animals , Animals, Newborn , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/pharmacology , Bacterial Load/drug effects , Diarrhea/microbiology , Diarrhea/physiopathology , Disease Models, Animal , Escherichia coli Infections/drug therapy , Escherichia coli Infections/microbiology , Escherichia coli Infections/prevention & control , Escherichia coli O157/pathogenicity , Feces/microbiology , Genetic Engineering/methods , Humans , Pyocins/administration & dosage , Pyocins/pharmacology , Rabbits , Treatment Outcome
9.
Infect Immun ; 78(10): 4176-86, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20643855

ABSTRACT

Novel approaches targeting the host's immune response to treat Staphylococcus aureus infections have significant potential to improve clinical outcomes, in particular during infection with antibiotic-resistant strains. The hyaluronic acid-binding peptide (HABP) PEP35 was assessed for its ability to treat S. aureus infections using a clinically relevant murine model of surgical wound infection. PEP35 demonstrated no direct antimicrobial activity against a range of antibiotic-susceptible and antibiotic-resistant clinical isolates of Staphylococcus aureus. However, when this peptide was administered at the onset of infection and up to 4 h postchallenge with a methicillin-susceptible (MSSA) or a methicillin-resistant (MRSA) strain of S. aureus, it significantly reduced the bacterial burden at the wound infection site. PEP35 reduced the tissue bacterial burden by exclusively modulating the local neutrophil response. PEP35 administration resulted in a significant early increase in local CXCL1 and CXCL2 production, which resulted in a more rapid influx of neutrophils to the infection site. Importantly, neutrophil influx was not sustained after treatment with PEP35, and administration of PEP35 alone did not induce a local inflammatory response. The immunomodulatory effects of PEP35 on CXC chemokine production were TLR2 and NF-κB dependent. We propose a novel role for a HABP as an innate immunomodulator in the treatment of MSSA and MRSA surgical wound infection through enhancement of the local CXC chemokine-driven neutrophil response.


Subject(s)
Hyaluronan Receptors/pharmacology , Neutrophils/drug effects , Neutrophils/physiology , Staphylococcal Infections/drug therapy , Wound Infection/drug therapy , Animals , Cell Line , Chemokines, CXC/metabolism , Humans , Hyaluronan Receptors/metabolism , Immunologic Factors/pharmacology , Methicillin-Resistant Staphylococcus aureus/physiology , Mice , Mice, Inbred C57BL , Mice, Knockout , NF-kappa B/metabolism , Staphylococcal Infections/microbiology , Toll-Like Receptor 2/genetics , Toll-Like Receptor 2/metabolism , Wound Healing/drug effects , Wound Infection/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...