Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ecology ; 90(9): 2556-66, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19769133

ABSTRACT

Responses of detrital pathways to nutrients may differ fundamentally from pathways involving living plants: basal carbon resources can potentially decrease rather than increase with nutrient enrichment. Despite the potential for nutrients to accelerate heterotrophic processes and fluxes of detritus, few studies have examined detritus-nutrient dynamics at whole-ecosystem scales. We quantified organic matter (OM) budgets over three consecutive years in two detritus-based Appalachian (U.S.A.) streams. After the first year, we began enriching one stream with low-level nitrogen and phosphorus inputs. Subsequent effects of nutrients on outputs of different OM compartments were determined using randomized intervention analysis. Nutrient addition did not affect dissolved or coarse particulate OM export but had dramatic effects on fine particulate OM (FPOM) export at all discharges relative to the reference stream. After two years of enrichment, FPOM export was 340% higher in the treatment stream but had decreased by 36% in the reference stream relative to pretreatment export. Ecosystem respiration, the dominant carbon output in these systems, also increased in the treatment stream relative to the reference, but these changes were smaller in magnitude than those in FPOM export. Nutrient enrichment accelerated rates of OM processing, transformation, and export, potentially altering food-web dynamics and ecosystem stability in the long term. The results of our large-scale manipulation of a detrital ecosystem parallel those from analogous studies of soils, in which net loss of organic carbon has often been shown to result from experimental nutrient addition at the plot scale. Streams are useful model systems in which to test the effects of nutrients on ecosystem-scale detrital dynamics because they allow both the tracking of OM conversion along longitudinal continua and the integrated measurement of fluxes of transformed material through downstream sites.


Subject(s)
Ecosystem , Nitrogen/metabolism , Phosphorus/metabolism , Rivers , Plant Development , Plants/metabolism
2.
Oecologia ; 151(4): 637-49, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17146682

ABSTRACT

Most nutrient enrichment studies in aquatic systems have focused on autotrophic food webs in systems where primary producers dominate the resource base. We tested the heterotrophic response to long-term nutrient enrichment in a forested, headwater stream. Our study design consisted of 2 years of pretreatment data in a reference and treatment stream and 2 years of continuous nitrogen (N) + phosphorus addition to the treatment stream. Studies were conducted with two leaf species that differed in initial C:N, Rhododendron maximum (rhododendron) and Acer rubrum (red maple). We determined the effects of nutrient addition on detrital resources (leaf breakdown rates, litter C:N and microbial activity) and tested whether nutrient enrichment affected macroinvertebrate consumers via increased biomass. Leaf breakdown rates were ca. 1.5 and 3x faster during the first and second years of enrichment, respectively, in the treatment stream for both leaf types. Microbial respiration rates of both leaf types were 3x higher with enrichment, and macroinvertebrate biomass associated with leaves increased ca. 2-3x with enrichment. The mass of N in macroinvertebrate biomass relative to leaves tended to increase with enrichment up to 6x for red maple and up to 44x for rhododendron leaves. Lower quality (higher C:N) rhododendron leaves exhibited greater changes in leaf nutrient content and macroinvertebrate response to nutrient enrichment than red maple leaves, suggesting a unique response by different leaf species to nutrient enrichment. Nutrient concentrations used in this study were moderate and equivalent to those in streams draining watersheds with altered land use. Thus, our results suggest that similarly moderate levels of enrichment may affect detrital resource quality and subsequently lead to altered energy and nutrient flow in detrital food webs.


Subject(s)
Ecosystem , Fertilizers , Invertebrates/metabolism , Plant Leaves/metabolism , Soil Microbiology , Acer/metabolism , Animals , Carbon/metabolism , Nitrogen/metabolism , Plant Leaves/microbiology , Rhododendron/metabolism , Soil/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...