Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Biol ; 226(7)2023 04 01.
Article in English | MEDLINE | ID: mdl-36967715

ABSTRACT

The Australian lycaenid butterfly Jalmenus evagoras has iridescent wings that are sexually dimorphic, spectrally and in their degree of polarization, suggesting that these properties are likely to be important in mate recognition. We first describe the results of a field experiment showing that free-flying individuals of J. evagoras discriminate between visual stimuli that vary in polarization content in blue wavelengths but not in others. We then present detailed reflectance spectrophotometry measurements of the polarization content of male and female wings, showing that female wings exhibit blue-shifted reflectance, with a lower degree of polarization relative to male wings. Finally, we describe a novel method for measuring alignment of ommatidial arrays: by measuring variation of depolarized eyeshine intensity from patches of ommatidia as a function of eye rotation, we show that (a) individual rhabdoms contain mutually perpendicular microvilli; (b) many rhabdoms in the array have their microvilli misaligned with respect to neighboring rhabdoms by as much as 45 deg; and (c) the misaligned ommatidia are useful for robust polarization detection. By mapping the distribution of the ommatidial misalignments in eye patches of J. evagoras, we show that males and females exhibit differences in the extent to which ommatidia are aligned. Both the number of misaligned ommatidia suitable for robust polarization detection and the number of aligned ommatidia suitable for edge detection vary with respect to both sex and eye patch elevation. Thus, J. evagoras exhibits finely tuned ommatidial arrays suitable for perception of polarized signals, likely to match sex-specific life history differences in the utility of polarized signals.


Subject(s)
Butterflies , Animals , Male , Female , Humans , Australia , Vision, Ocular , Photoreceptor Cells, Invertebrate
2.
J Neurosci ; 37(47): 11353-11365, 2017 11 22.
Article in English | MEDLINE | ID: mdl-28972121

ABSTRACT

Within reflex circuits, specific anatomical projections allow central neurons to relay sensations to effectors that generate movements. A major challenge is to relate anatomical features of central neural populations, such as asymmetric connectivity, to the computations the populations perform. To address this problem, we mapped the anatomy, modeled the function, and discovered a new behavioral role for a genetically defined population of central vestibular neurons in rhombomeres 5-7 of larval zebrafish. First, we found that neurons within this central population project preferentially to motoneurons that move the eyes downward. Concordantly, when the entire population of asymmetrically projecting neurons was stimulated collectively, only downward eye rotations were observed, demonstrating a functional correlate of the anatomical bias. When these neurons are ablated, fish failed to rotate their eyes following either nose-up or nose-down body tilts. This asymmetrically projecting central population thus participates in both upward and downward gaze stabilization. In addition to projecting to motoneurons, central vestibular neurons also receive direct sensory input from peripheral afferents. To infer whether asymmetric projections can facilitate sensory encoding or motor output, we modeled differentially projecting sets of central vestibular neurons. Whereas motor command strength was independent of projection allocation, asymmetric projections enabled more accurate representation of nose-up stimuli. The model shows how asymmetric connectivity could enhance the representation of imbalance during nose-up postures while preserving gaze stabilization performance. Finally, we found that central vestibular neurons were necessary for a vital behavior requiring maintenance of a nose-up posture: swim bladder inflation. These observations suggest that asymmetric connectivity in the vestibular system facilitates representation of ethologically relevant stimuli without compromising reflexive behavior.SIGNIFICANCE STATEMENT Interneuron populations use specific anatomical projections to transform sensations into reflexive actions. Here we examined how the anatomical composition of a genetically defined population of balance interneurons in the larval zebrafish relates to the computations it performs. First, we found that the population of interneurons that stabilize gaze preferentially project to motoneurons that move the eyes downward. Next, we discovered through modeling that such projection patterns can enhance the encoding of nose-up sensations without compromising gaze stabilization. Finally, we found that loss of these interneurons impairs a vital behavior, swim bladder inflation, that relies on maintaining a nose-up posture. These observations suggest that anatomical specialization permits neural circuits to represent relevant features of the environment without compromising behavior.


Subject(s)
Brain/physiology , Eye Movements , Motor Neurons/physiology , Sensory Receptor Cells/physiology , Vestibular Nerve/physiology , Animals , Brain/cytology , Reflex , Vestibular Nerve/cytology , Zebrafish
3.
Ann Neurol ; 66(5): 644-53, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19938147

ABSTRACT

OBJECTIVE: In humans, abnormal neuronal migration and severe neuronal disorganization resulting from Lis1 (lissencephaly) haploinsufficiency contributes to cognitive impairment and seizures early in life. In Lis1 heterozygotic mice, severe hippocampal disorganization and cognitive impairment have also been reported. Using this mouse model, we examined the functional impact of LIS1 deficiency with particular focus on excitatory glutamate-mediated synaptic transmission. METHODS: We used visualized patch-clamp recordings in acute hippocampal slices. We recorded spontaneous, miniature and stimulation-evoked excitatory postsynaptic current (EPSC). Additional mice were processed for immunohistochemistry, electron microscopy (EM), or video-electroencephalographic (EEG) monitoring. RESULTS: Video-EEG confirmed the presence of spontaneous electrographic seizures in Lis1 mutant mice. In disorganized hippocampal slices from Lis1(+/-) mice, we noted a nearly two-fold significant increase in the frequency of spontaneous and miniature EPSC; no significant change in amplitude or decay was noted. Synaptic function assessed using brief repetitive or paired-pulse stimulation protocols, also revealed significant enhancement of glutamate-mediated excitation. Low concentrations of cadmium, a nonspecific blocker of voltage-dependent calcium channels mediating vesicle release, effectively restored paired-pulse facilitation deficits back to control levels. Analysis of synapse ultrastructure at the EM level identified a large increase in synaptic vesicle number. INTERPRETATION: Seizure activity, possibly associated with increased glutamate-mediated excitation and an increased pool of vesicles at the presynaptic site, was demonstrated in a mouse model of type I lissencephaly.


Subject(s)
1-Alkyl-2-acetylglycerophosphocholine Esterase/genetics , Classical Lissencephalies and Subcortical Band Heterotopias/genetics , Excitatory Postsynaptic Potentials/physiology , Microtubule-Associated Proteins/genetics , Seizures/genetics , Synaptic Vesicles/genetics , Animals , Cell Count/methods , Classical Lissencephalies and Subcortical Band Heterotopias/pathology , Classical Lissencephalies and Subcortical Band Heterotopias/physiopathology , Female , Male , Mice , Mice, Neurologic Mutants , Seizures/physiopathology , Synaptic Vesicles/pathology
4.
Ann Neurol ; 61(2): 139-52, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17279540

ABSTRACT

OBJECTIVE: To identify brain regions, cell types, or both that generate abnormal electrical discharge in tuberous sclerosis complex (TSC). Here we examined excitatory and inhibitory synaptic currents in human tissue samples obtained from a TSC patient with no discernible cortical tubers and acute neocortical brain slices from a mouse featuring synapsin-driven conditional deletion of a TSC1 gene. These studies were designed to assess whether TSC gene inactivation alters excitability. METHODS: We used visualized patch-clamp (human and mouse) and extracellular field (mouse) recordings. Additional mice were processed for immunohistochemistry or Western blot analysis. RESULTS: Detailed anatomic studies in brain tissue sections from synapsin-TSC1 conditional knock-out mice failed to uncover gross anatomic defects, loss of lamination, or frank tuber formation. However, regions of abnormal and potentially activated neocortex were shown using antibodies to nonphosphorylated neurofilaments (SMI-311) and immediate early genes (c-Fos). Extracellular recordings from neocortical slices, examining synaptic activity in these regions, demonstrated clear differences in excitability between conditional knock-out and age-matched control mice. Whole-cell patch-clamp recordings demonstrated excitatory synaptic currents with strikingly long duration and epileptiform discharge patterns, similar to waveforms observed in our human tissue samples. These events were 1-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor mediated and were most prominent in neocortex. Normal-appearing inhibitory postsynaptic currents (human) and intrinsic neuronal firing patterns (mouse) were also recorded. INTERPRETATION: This combination of human and mouse tissue studies suggests, for the first time, that synaptic excitation is altered in a direction that favors seizure generation in TSC brain tissue regardless of cortical tubers.


Subject(s)
Neocortex/physiopathology , Neurons/metabolism , Tuberous Sclerosis/physiopathology , Tumor Suppressor Proteins/deficiency , Adult , Animals , Blotting, Western , Electric Stimulation , Electrophysiology , Epilepsy/physiopathology , Excitatory Postsynaptic Potentials , Female , Humans , Immunohistochemistry , In Vitro Techniques , Inhibitory Postsynaptic Potentials , Mice , Mice, Knockout , Neocortex/metabolism , Neocortex/pathology , Patch-Clamp Techniques , Proto-Oncogene Proteins c-fos/metabolism , Receptors, AMPA/metabolism , Synapses , Tuberous Sclerosis/metabolism , Tuberous Sclerosis Complex 1 Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...