Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
PLoS One ; 14(10): e0223958, 2019.
Article in English | MEDLINE | ID: mdl-31622412

ABSTRACT

Citrus tatter leaf virus (CTLV) threatens citrus production worldwide because it induces bud-union crease on the commercially important Citrange (Poncirus trifoliata × Citrus sinensis) rootstocks. However, little is known about its genomic diversity and how such diversity may influence virus detection. In this study, full-length genome sequences of 12 CTLV isolates from different geographical areas, intercepted and maintained for the past 60 years at the Citrus Clonal Protection Program (CCPP), University of California, Riverside, were characterized using next generation sequencing. Genome structure and sequence for all CTLV isolates were similar to Apple stem grooving virus (ASGV), the type species of Capillovirus genus of the Betaflexiviridae family. Phylogenetic analysis highlighted CTLV's point of origin in Asia, the virus spillover to different plant species and the bottleneck event of its introduction in the United States of America (USA). A reverse transcription quantitative polymerase chain reaction assay was designed at the most conserved genome area between the coat protein and the 3'-untranslated region (UTR), as identified by the full genome analysis. The assay was validated with different parameters (e.g. specificity, sensitivity, transferability and robustness) using multiple CTLV isolates from various citrus growing regions and it was compared with other published assays. This study proposes that in the era of powerful affordable sequencing platforms the presented approach of systematic full-genome sequence analysis of multiple virus isolates, and not only a small genome area of a small number of isolates, becomes a guideline for the design and validation of molecular virus detection assays, especially for use in high value germplasm programs.


Subject(s)
Citrus sinensis/virology , Flexiviridae/classification , Poncirus/virology , Whole Genome Sequencing/methods , Citrus sinensis/physiology , Conserved Sequence , Evolution, Molecular , Flexiviridae/genetics , Flexiviridae/isolation & purification , Genome Size , Genome, Human , High-Throughput Nucleotide Sequencing , Humans , Phylogeny , Plant Breeding , Poncirus/physiology
2.
Front Microbiol ; 4: 366, 2013.
Article in English | MEDLINE | ID: mdl-24339822

ABSTRACT

Citrus tristeza virus (CTV) isolates collected from citrus germplasm, dooryard and field trees in California from 1914 have been maintained in planta under quarantine in the Citrus Clonal Protection Program (CCPP), Riverside, California. This collection, therefore, represents populations of CTV isolates obtained over time and space in California. To determine CTV genetic diversity in this context, genotypes of CTV isolates from the CCPP collection were characterized using multiple molecular markers (MMM). Genotypes T30, VT, and T36 were found at high frequencies with T30 and T30+VT genotypes being the most abundant. The MMM analysis did not identify T3 and B165/T68 genotypes; however, biological and phylogenetic analysis suggested some relationships of CCPP CTV isolates with these two genotypes. Phylogenetic analysis of the CTV coat protein (CP) gene sequences classified the tested isolates into seven distinct clades. Five clades were in association with the standard CTV genotypes T30, T36, T3, VT, and B165/T68. The remaining two identified clades were not related to any standard CTV genotypes. Spatiotemporal analysis indicated a trend of reduced genotype and phylogenetic diversity as well as virulence from southern California (SC) at early (1907-1957) in comparison to that of central California (CC) isolates collected from later (1957-2009) time periods. CTV biological characterization also indicated a reduced number and less virulent stem pitting (SP) CTV isolates compared to seedling yellows isolates introduced to California. This data provides a historical insight of the introduction, movement, and genetic diversity of CTV in California and provides genetic and biological information useful for CTV quarantine, eradication, and disease management strategies such as CTV-SP cross protection.

SELECTION OF CITATIONS
SEARCH DETAIL