Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Astrobiology ; 19(7): 849-866, 2019 07.
Article in English | MEDLINE | ID: mdl-30964330

ABSTRACT

The shallow subsurface of Mars is extremely interesting as a possible microbial habitat because it becomes temporarily wet, it is shielded from radiation, and mixing by aeolian processes could provide the sources of energy and nutrients necessary for sustaining microbial life in it. The Modern Aqueous Habitat Reconnaissance Suite (MAHRS) was developed primarily to search for potentially habitable environments in the shallow subsurface of Mars and to study weathering, but it can also be used to search for potentially habitable environments in the shallow subsurface of other planetary bodies such as the Icy Worlds. MAHRS includes an instrument developed to measure regolith wetness and search for brine in the shallow subsurface of Mars, where it is most likely to be found. The detection of brine can aid in our understanding not only of habitability but also of geochemistry and aqueous weathering processes. Besides the regolith wetness sensor, MAHRS includes an electric field sensor, an optical microscope, and a radiometer developed to characterize the near-surface environment and study mixing by aeolian processes. MAHRS was designed to aid in the selection of optimum areas for sample collection for return to Earth.


Subject(s)
Ecosystem , Exobiology/instrumentation , Extraterrestrial Environment/chemistry , Mars , Anaerobiosis , Archaea/isolation & purification , Earth, Planet , Exobiology/methods , Geologic Sediments/chemistry , Geologic Sediments/microbiology , Ice Cover/chemistry , Ice Cover/microbiology , Oceans and Seas , Salts/analysis , Salts/chemistry , Water/analysis , Water/chemistry , Water Microbiology , Weather
SELECTION OF CITATIONS
SEARCH DETAIL
...