Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Phys Med Biol ; 68(3)2023 01 30.
Article in English | MEDLINE | ID: mdl-36595255

ABSTRACT

Objective.The aim of this work was to develop and validate a method for remote dosimetric auditing that enables dose-volume histogram parameter comparisons of measured and planned dose in the patient CT volume.Approach. The method is derived by adapting and combining a remote electronic portal imaging (EPID) based auditing method (Virtual Epid based Standard Phantom Audit-VESPA) and a method to estimate 3D in-patient dose distributions from planar dosimetric measurements. The method was tested with a series of error-induced plans including monitor unit and multileaf collimator (MLC) positioning errors. A pilot audit study was conducted with eleven radiotherapy centres. IMRT plans from two clinical trials, a post-prostatectomy (RAVES trial) plan and a head and neck (HPV trial) plan were utilized. Clinically relevant DVH parameters for the planned dose and estimated measured dose were compared.Main results. The method was found to reproduce the induced dose errors within 0.5% and was sensitive to MLC positioning errors as small as 0.5 mm. For the RAVES plan audit all DVH results except one were within 3% and for the HPV plan audit all DVH results were within 3% except three with a maximum difference of 3.2%.Significance. The results from the audit method produce clinically meaningful DVH metrics for the audited plan and could enable an improved understanding of a centre's radiotherapy quality.


Subject(s)
Papillomavirus Infections , Radiotherapy, Intensity-Modulated , Male , Humans , Radiotherapy Dosage , Radiotherapy, Intensity-Modulated/methods , Radiotherapy Planning, Computer-Assisted/methods , Radiometry
2.
Phys Med ; 103: 108-118, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36272328

ABSTRACT

PURPOSE: The first aim was to generate and compare synthetic-CT (sCT) images using a conditional generative adversarial network (cGAN) method (Pix2Pix) for MRI-only prostate radiotherapy planning by testing several generators, loss functions, and hyper-parameters. The second aim was to compare the optimized Pix2Pix model with five other architectures (bulk-density, atlas-based, patch-based, U-Net, and GAN). METHODS: For 39 patients treated by VMAT for prostate cancer, T2-weighted MRI images were acquired in addition to CT images for treatment planning. sCT images were generated using the Pix2Pix model. The generator, loss function, and hyper-parameters were tuned to improve sCT image generation (in terms of imaging endpoints). The final evaluation was performed by 3-fold cross-validation. This method was compared to five other methods using the following imaging endpoints: the mean absolute error (MAE) and mean error (ME) between sCT and reference CT images (rCT) of the whole pelvis, bones, prostate, bladder, and rectum. For dose planning analysis, the dose-volume histogram metric differences and 3D gamma analysis (local, 1 %/1 mm) were calculated using the sCT and reference CT images. RESULTS: Compared with the other architectures, Pix2Pix with Perceptual loss function and generator ResNet 9 blocks showed the lowest MAE (29.5, 107.7, 16.0, 13.4, and 49.1 HU for the whole pelvis, bones, prostate, bladder, and rectum, respectively) and the highest gamma passing rates (99.4 %, using the 1 %/1mm and 10 % dose threshold criterion). Concerning the DVH points, the mean errors were -0.2% for the planning target volume V95%, 0.1 % for the rectum V70Gy, and -0.1 % for the bladder V50Gy. CONCLUSION: The sCT images generated from MRI data with the Pix2Pix architecture had the lowest image errors and similar dose uncertainties (in term of gamma pass-rate and dose-volume histogram metric differences) than other deep learning methods.


Subject(s)
Deep Learning , Prostate , Male , Humans , Tomography, X-Ray Computed/methods , Magnetic Resonance Imaging/methods , Pelvis , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy Dosage
3.
Phys Med Biol ; 63(3): 035001, 2018 01 22.
Article in English | MEDLINE | ID: mdl-29300184

ABSTRACT

Many similarity metrics exist for inter-observer contouring variation studies, however no correlation between metric choice and prostate cancer radiotherapy dosimetry has been explored. These correlations were investigated in this study. Two separate trials were undertaken, the first a thirty-five patient cohort with three observers, the second a five patient dataset with ten observers. Clinical and planning target volumes (CTV and PTV), rectum, and bladder were independently contoured by all observers in each trial. Structures were contoured on T2-weighted MRI and transferred onto CT following rigid registration for treatment planning in the first trial. Structures were contoured directly on CT in the second trial. STAPLE and majority voting volumes were generated as reference gold standard volumes for each structure for the two trials respectively. VMAT treatment plans (78 Gy to PTV) were simulated for observer and gold standard volumes, and dosimetry assessed using multiple radiobiological metrics. Correlations between contouring similarity metrics and dosimetry were calculated using Spearman's rank correlation coefficient. No correlations were observed between contouring similarity metrics and dosimetry for CTV within either trial. Volume similarity correlated most strongly with radiobiological metrics for PTV in both trials, including TCPPoisson (ρ = 0.57, 0.65), TCPLogit (ρ = 0.39, 0.62), and EUD (ρ = 0.43, 0.61) for each respective trial. Rectum and bladder metric correlations displayed no consistency for the two trials. PTV volume similarity was found to significantly correlate with rectum normal tissue complication probability (ρ = 0.33, 0.48). Minimal to no correlations with dosimetry were observed for overlap or boundary contouring metrics. Future inter-observer contouring variation studies for prostate cancer should incorporate volume similarity to provide additional insights into dosimetry during analysis.


Subject(s)
Computer Simulation , Magnetic Resonance Imaging/methods , Observer Variation , Prostatic Neoplasms/pathology , Prostatic Neoplasms/radiotherapy , Radiometry/methods , Radiotherapy Planning, Computer-Assisted/methods , Humans , Male
4.
Phys Med Biol ; 61(2): 872-87, 2016 Jan 21.
Article in English | MEDLINE | ID: mdl-26740517

ABSTRACT

In-room cine-MRI guidance can provide non-invasive target localization during radiotherapy treatment. However, in order to cope with finite imaging frequency and system latencies between target localization and dose delivery, tumour motion prediction is required. This work proposes a framework for motion prediction dedicated to cine-MRI guidance, aiming at quantifying the geometric uncertainties introduced by this process for both tumour tracking and beam gating. The tumour position, identified through scale invariant features detected in cine-MRI slices, is estimated at high-frequency (25 Hz) using three independent predictors, one for each anatomical coordinate. Linear extrapolation, auto-regressive and support vector machine algorithms are compared against systems that use no prediction or surrogate-based motion estimation. Geometric uncertainties are reported as a function of image acquisition period and system latency. Average results show that the tracking error RMS can be decreased down to a [0.2; 1.2] mm range, for acquisition periods between 250 and 750 ms and system latencies between 50 and 300 ms. Except for the linear extrapolator, tracking and gating prediction errors were, on average, lower than those measured for surrogate-based motion estimation. This finding suggests that cine-MRI guidance, combined with appropriate prediction algorithms, could relevantly decrease geometric uncertainties in motion compensated treatments.


Subject(s)
Magnetic Resonance Imaging, Cine/methods , Motion , Radiotherapy, Computer-Assisted/methods , Regression Analysis , Support Vector Machine
5.
Phys Med Biol ; 60(5): 1793-805, 2015 Mar 07.
Article in English | MEDLINE | ID: mdl-25658193

ABSTRACT

Collected real-life clinical target volume (CTV) displacement data show that some patients undergoing external beam radiotherapy (EBRT) demonstrate significantly more fraction-to-fraction variability in their displacement ('random error') than others. This contrasts with the common assumption made by historical recipes for margin estimation for EBRT, that the random error is constant across patients. In this work we present statistical models of CTV displacements in which random errors are characterised by an inverse gamma (IG) distribution in order to assess the impact of random error variability on CTV-to-PTV margin widths, for eight real world patient cohorts from four institutions, and for different sites of malignancy. We considered a variety of clinical treatment requirements and penumbral widths. The eight cohorts consisted of a total of 874 patients and 27 391 treatment sessions. Compared to a traditional margin recipe that assumes constant random errors across patients, for a typical 4 mm penumbral width, the IG based margin model mandates that in order to satisfy the common clinical requirement that 90% of patients receive at least 95% of prescribed RT dose to the entire CTV, margins be increased by a median of 10% (range over the eight cohorts -19% to +35%). This substantially reduces the proportion of patients for whom margins are too small to satisfy clinical requirements.


Subject(s)
Bayes Theorem , Lung Neoplasms/radiotherapy , Models, Statistical , Prostatic Neoplasms/radiotherapy , Radiotherapy Planning, Computer-Assisted/methods , Cohort Studies , Humans , Lung Neoplasms/pathology , Male , Prostatic Neoplasms/pathology , Radiotherapy Dosage
6.
Br J Radiol ; 87(1042): 20140325, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25061776

ABSTRACT

OBJECTIVE: To eliminate the effects of body deformation for MR-based prostate treatment planning, coil mounts are essential. In this study, we evaluated the effect of the coil set-up on image quality. METHODS: A custom-designed pelvic-shaped phantom was scanned by systematically increasing the anterior body-to-coil (BTC) distance from 30 to 90 mm. The image quality near the organs of interest was determined in order to characterize the relationship between image quality and BTC distance at the critical organ structures. The half intensity reduction (HIR) was calculated to determine the sensitivity of each organ structure to the BTC distance change. RESULTS: As the BTC distance increased, the uniformity reduced at 3% per millimetre. The HIR value indicated that the bladder signal is most sensitive to the change in BTC distance. By maintaining a constant BTC distance set-up, the intensity uniformity was improved by 28% along the B0 directions. CONCLUSION: Positioning the MRI coil on mounts can reduce body deformation but adversely degrades the image quality. The magnitude of this effect has been quantified for prostate MR simulation scanning. The coil needs to be positioned not only with a minimal but also uniform BTC distance in order to maximize image quality. ADVANCES IN KNOWLEDGE: A method to characterize the effect on image quality due to the use of coil mounts was demonstrated. Coil mounts whose height can be adjusted individually to keep BTC distance constant are necessary to maintain a uniform image across the entire field of view.


Subject(s)
Image Enhancement/methods , Magnetic Resonance Imaging/methods , Prostatic Neoplasms/radiotherapy , Radiotherapy Planning, Computer-Assisted/methods , Humans , Magnetic Resonance Imaging/instrumentation , Male , Patient Positioning , Pelvis , Phantoms, Imaging
7.
Phys Med ; 30(3): 326-30, 2014 May.
Article in English | MEDLINE | ID: mdl-24176533

ABSTRACT

This study is part of a project concerned with real-time EPID-based verification of the incremental dose delivered during IMRT radiation treatments. Three automated Monte-Carlo methods are devised to calculate the differential dose delivered to the EPID during treatment. All methods break down the normalized total monitor units into a number of equally spaced segments. A method models the dynamic simulation as a series of static fields, each field corresponding to an IMRT segment or a sub-segment. Another method models each segment as a separate dynamic IMRT file. A third method, which modifies the DYNVMLC module of the BEAMnrc code, uses the full-MLC file. The MLC positions for the simulated photons are sequentially selected within DYNVMLC to correspond to individual segments of the delivery. A bash script calls the BEAM shared-library to calculate and store the EPID dose for each segment. Validation is performed by comparing the average dose contributed by all segments with the dose predicted by a canonical dynamic IMRT simulation that uses the same MLC file. The best results are achieved by the methods based on dynamic simulations (where leaf positions within a segment are interpolated for simulated photons) whose normalized root mean square error is at the most 0.2% over the focal area. EPID images can be predicted for individual segments (or smaller intervals) of an IMRT delivery using Monte-Carlo methods. The MLC file can be externally spliced or a simple modification of the DYNVMLC code can achieve accurate results.


Subject(s)
Electrical Equipment and Supplies , Monte Carlo Method , Radiotherapy, Image-Guided/instrumentation , Radiotherapy, Intensity-Modulated/instrumentation , Radiotherapy Planning, Computer-Assisted , Time Factors , Uncertainty
8.
Med Phys ; 40(3): 031713, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23464308

ABSTRACT

PURPOSE: Dosimetric verification of radiation therapy is crucial when delivering complex treatments like intensity modulated radiation therapy (IMRT) or volumetric modulated arc therapy (VMAT. Pretreatment verification, characterized by methods applied without the patient present and before the treatment start date, is typically carried out at most centers. In vivo dosimetric verification, characterized by methods applied with the patient present, is not commonly carried out in the clinic. This work presents a novel, model-based EPID dosimetry method that could be used for routine clinical in vivo patient treatment verification. METHODS: The authors integrated a detailed fluence model with a patient scatter prediction model that uses a superposition of scatter energy fluence kernels, generated via Monte Carlo techniques, to determine patient scatter fluence delivered to the EPID. The total dose to the EPID was calculated using the sum of convolutions of the calculated energy fluence distribution entering the EPID with monoenergetic dose kernels, specific to the a-Si EPID. Measured images with simple, square fields delivered to slab phantoms were validated against predicted images. Measured and predicted images acquired during the delivery of IMRT fields to slabs and an anthropomorphic phantom were compared using the χ-comparison for 3% dose difference and 3 mm distance-to-agreement criteria. RESULTS: Predicted and measured images of the square fields with slabs in the field agreed within 2.5%. Predicted portal dose images of clinical IMRT fields delivered to slabs and an anthropomorphic phantom agreed with measured images within 3% and 3 mm for an average of at least 97% of the infield pixels (defined as >10% maximum field dose) for each case, over all fields. CONCLUSIONS: This work presents the first validation of the integration of a comprehensive fluence model with a patient and EPID radiation transport model that accounts for patient transmission, including complex factors such as patient scatter and the energy response of the a-Si detector. The portal dose image prediction model satisfies the 3% and 3 mm criteria for IMRT fields delivered to slab phantoms and could be used for patient treatment verification.


Subject(s)
Models, Theoretical , Radiation Dosage , Radiotherapy, Intensity-Modulated/methods , Electrical Equipment and Supplies , Humans , Monte Carlo Method , Phantoms, Imaging , Radiotherapy, Intensity-Modulated/instrumentation , Scattering, Radiation
9.
Phys Med Biol ; 57(9): 2743-55, 2012 May 07.
Article in English | MEDLINE | ID: mdl-22507828

ABSTRACT

Early approaches to characterizing errors in target displacement during a fractionated course of radiotherapy assumed that the underlying fraction-to-fraction variability in target displacement, known as the 'treatment error' or 'random error', could be regarded as constant across patients. More recent approaches have modelled target displacement allowing for differences in random error between patients. However, until recently it has not been feasible to compare the goodness of fit of alternate models of random error rigorously. This is because the large volumes of real patient data necessary to distinguish between alternative models have only very recently become available. This work uses real-world displacement data collected from 365 patients undergoing radical radiotherapy for prostate cancer to compare five candidate models for target displacement. The simplest model assumes constant random errors across patients, while other models allow for random errors that vary according to one of several candidate distributions. Bayesian statistics and Markov Chain Monte Carlo simulation of the model parameters are used to compare model goodness of fit. We conclude that modelling the random error as inverse gamma distributed provides a clearly superior fit over all alternatives considered. This finding can facilitate more accurate margin recipes and correction strategies.


Subject(s)
Movement , Radiotherapy, Computer-Assisted/methods , Bayes Theorem , Humans , Male , Markov Chains , Monte Carlo Method , Prostatic Neoplasms/physiopathology , Prostatic Neoplasms/radiotherapy
10.
Australas Phys Eng Sci Med ; 34(4): 459-66, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22038292

ABSTRACT

The long-term stability of three clinical electronic portal imaging devices (EPIDs) was studied to determine if longer times between calibrations can be justified. This would make alternatives to flood-field calibration of EPIDs clinically feasible, allowing for more effective use of EPIDs for dosimetry. Images were acquired monthly for each EPID as part of regular clinical quality assurance over a time period of approximately 3 years. The images were analysed to determine (1) the long-term stability of the EPID positioning system, (2) the dose response of the central pixels and (3) the long term stability of each pixel in the imager. The position of the EPID was found to be very repeatable with variations less than 0.3 pixels (0.27 mm) for all imagers (1 standard deviation). The central axis dose response was found to reliably track ion chamber measurements to better than 0.5%. The mean variation in pixel response (1 standard deviation), averaged over all pixels in the EPID, was found to be at most 0.6% for the three EPIDs studied over the entire period. More than 99% of pixels in each EPID showed less than 1% variation. Since the EPID response was found to be very stable over long periods of time, an annual calibration should be sufficient in most cases. More complex dosimetric calibrations should be clinically feasible.


Subject(s)
Biomedical Engineering/standards , Electronics, Medical/standards , Image Processing, Computer-Assisted/standards , Biomedical Engineering/instrumentation , Calibration , Electronics, Medical/instrumentation
11.
Med Phys ; 36(7): 3028-39, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19673202

ABSTRACT

Dosimetric properties of an amorphous-silicon electronic portal imaging device (EPID) operated in a real-time acquisition mode were investigated. This mode will be essential for time-resolved dose verification of dynamic (sliding window) intensity modulated radiation therapy (IMRT) and intensity modulated arc radiation therapy (arc-IMRT). The EPID was used in continuous acquisition mode (i.e., "cine" mode) where individual sequential image frames are acquired in real time. The properties studied include dose linearity, reproducibility of response, and image stability. Results of using the continuous acquisition mode with several example treatments including dynamic IMRT, arc treatment, and single-arc-IMRT are compared to results using the well-studied integrated acquisition mode (i.e., "frame averaging" or "IMRT" mode). Real-time EPID response was also compared to real-time ion-chamber data for selected points in the deliveries. The example treatment deliveries in both continuous and integrated acquisition modes were converted to arbitrary EPID dose units via a calibration field. The summation of all acquired continuous mode images was compared using percentage dose difference to the single image acquired in the integrated mode using in-field pixels only (defined as those pixels > 10% of maximum, in-field signal). Using the continuous acquisition mode, the EPID response was not linear with dose. It was found that the continuous mode dose response corresponded approximately to dropping one image per acquisition session. Reproducibility of EPID response to low monitor units (MUs) was found to be poor but greatly improved with increasing MU. Open field profiles were found to be stable in the cross-plane direction but required several frames to become stable in the in-plane direction. However, both of these issues are clinically insignificant due to arc-IMRT deliveries requiring relatively large monitor units (> 100 MU). Analysis of the five IMRT, arc, and arc-IMRT tests revealed that all examples compared to within 2% of maximum dose for more than 95% of in-field pixels. The continuous acquisition mode is suited to time-resolved dosimetry applications including arc-IMRT and dynamic IMRT, giving comparable dose results to the well-studied integrated acquisition mode, although caution should be used in low MU applications. Time-resolved EPID dose information also compared well to time-resolved ion-chamber measurements.


Subject(s)
Radiometry/instrumentation , Radiotherapy, Intensity-Modulated/methods , Calibration , Electrical Equipment and Supplies , Head and Neck Neoplasms/radiotherapy , Humans , Male , Prostatic Neoplasms/radiotherapy , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Silicon Compounds , Time Factors
12.
J Med Imaging Radiat Oncol ; 53(3): 325-30, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19624301

ABSTRACT

The advent of CT scanners with larger bore sizes have offered the potential for radiotherapy departments to undertake the majority or all treatment planning simulation via CT. Wide-bore scanners can present some unique issues when being commissioned for clinical use. During the process of converting a radiotherapy department to full CT simulation, several issues regarding images produced by a wide-bore scanner were identified. These were investigated by using electron density and image resolution phantoms. It was found that the reconstruction algorithm used by the scanner of interest for extended field of view (FOV) imaging, combined with the extended X-ray source-to-detector distance, influenced the resolution and quality of images. The reconstruction technique influenced the relationship between electron density and CT number with distance from the scanner axis, leading to image artefacts. A variation of 400 CT units is seen for cortical bone across the scanner FOV, with smaller variations for water and breast tissue. It is anticipated that this variation will impact on tissue delineation, and subsequent dose calculation would become questionable should beams pass through large areas of artefact. Image resolutions of 0.5 and 0.3 line-pairs per millimetre (lp/mm) were achievable in the primary and extended FOV regions respectively. Several aspects of image production with a wide-bore scanner that can influence imaging for radiotherapy treatment planning have been highlighted. Departments should be mindful of these issues when using a GE Lightspeed wide-bore scanner and should consider how scanner settings should be optimised for the use of images in treatment planning.


Subject(s)
Radiographic Image Enhancement/instrumentation , Radiology/instrumentation , Tomography, X-Ray Computed/instrumentation , Australia , Equipment Design , Equipment Failure Analysis
13.
J Med Imaging Radiat Oncol ; 52(5): 511-6, 2008 Oct.
Article in English | MEDLINE | ID: mdl-19032399

ABSTRACT

The aim of the study was to determine prostate set-up accuracy and set-up margins with off-line bony anatomy-based imaging protocols, compared with online implanted fiducial marker-based imaging with daily corrections. Eleven patients were treated with implanted prostate fiducial markers and online set-up corrections. Pretreatment orthogonal electronic portal images were acquired to determine couch shifts and verification images were acquired during treatment to measure residual set-up error. The prostate set-up errors that would result from skin marker set-up, off-line bony anatomy-based protocols and online fiducial marker-based corrections were determined. Set-up margins were calculated for each set-up technique using the percentage of encompassed isocentres and a margin recipe. The prostate systematic set-up errors in the medial-lateral, superior-inferior and anterior-posterior directions for skin marker set-up were 2.2, 3.6 and 4.5 mm (1 standard deviation). For our bony anatomy-based off-line protocol the prostate systematic set-up errors were 1.6, 2.5 and 4.4 mm. For the online fiducial based set-up the results were 0.5, 1.4 and 1.4 mm. A prostate systematic error of 10.2 mm was uncorrected by the off-line bone protocol in one patient. Set-up margins calculated to encompass 98% of prostate set-up shifts were 11-14 mm with bone off-line set-up and 4-7 mm with online fiducial markers. Margins from the van Herk margin recipe were generally 1-2 mm smaller. Bony anatomy-based set-up protocols improve the group prostate set-up error compared with skin marks; however, large prostate systematic errors can remain undetected or systematic errors increased for individual patients. The margin required for set-up errors was found to be 10-15 mm unless implanted fiducial markers are available for treatment guidance.


Subject(s)
Pelvic Bones/diagnostic imaging , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/radiotherapy , Prostheses and Implants , Radiographic Image Enhancement/instrumentation , Radiographic Image Enhancement/methods , Radiotherapy, Computer-Assisted/instrumentation , Radiotherapy, Computer-Assisted/methods , Humans , Male , Prostate/diagnostic imaging , Reproducibility of Results , Sensitivity and Specificity
14.
J Med Imaging Radiat Oncol ; 52(5): 517-24, 2008 Oct.
Article in English | MEDLINE | ID: mdl-19032400

ABSTRACT

The aims of this study were to investigate whether intrafraction prostate motion can affect the accuracy of online prostate positioning using implanted fiducial markers and to determine the effect of prostate rotations on the accuracy of the software-predicted set-up correction shifts. Eleven patients were treated with implanted prostate fiducial markers and online set-up corrections. Orthogonal electronic portal images were acquired to determine couch shifts before treatment. Verification images were also acquired during treatment to assess whether intrafraction motion had occurred. A limitation of the online image registration software is that it does not allow for in-plane prostate rotations (evident on lateral portal images) when aligning marker positions. The accuracy of couch shifts was assessed by repeating the registration measurements with separate software that incorporates full in-plane prostate rotations. Additional treatment time required for online positioning was also measured. For the patient group, the overall postalignment systematic prostate errors were less than 1.5 mm (1 standard deviation) in all directions (range 0.2-3.9 mm). The random prostate errors ranged from 0.8 to 3.3 mm (1 standard deviation). One patient exhibited intrafraction prostate motion, resulting in a postalignment prostate set-up error of more than 10 mm for one fraction. In 14 of 35 fractions, the postalignment prostate set-up error was greater than 5 mm in the anterior-posterior direction for this patient. Maximum prostate rotations measured from the lateral images varied from 2 degrees to 20 degrees for the patients. The differences between set-up shifts determined by the online software without in-plane rotations to align markers, and with rotations applied, was less than 1 mm (root mean square), with a maximum difference of 4.1 mm. Intrafraction prostate motion was found to reduce the effectiveness of the online set-up for one of the patients. A larger study is required to determine the magnitude of this problem for the patient population. The inability in the current software to incorporate in-plane prostate rotations is a limitation that should not introduce large errors, provided that the treatment isocentre is positioned near the centre of the prostate.


Subject(s)
Pelvic Bones/diagnostic imaging , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/radiotherapy , Prostheses and Implants , Radiographic Image Enhancement/instrumentation , Radiographic Image Enhancement/methods , Radiotherapy, Computer-Assisted/instrumentation , Radiotherapy, Computer-Assisted/methods , Humans , Male , Online Systems , Prostate/diagnostic imaging , Reproducibility of Results , Sensitivity and Specificity
15.
Australas Phys Eng Sci Med ; 31(3): 216-22, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18946980

ABSTRACT

This paper describes a software tool developed for research into the use of an electronic portal imaging device (EPID) to verify dose for intensity modulated radiation therapy (IMRT) beams. A portal dose image prediction (PDIP) model that predicts the EPID response to IMRT beams has been implemented into a commercially available treatment planning system (TPS). The software tool described in this work was developed to modify the TPS PDIP model by incorporating correction factors into the predicted EPID image to account for the difference in EPID response to open beam radiation and multileaf collimator (MLC) transmitted radiation. The processes performed by the software tool include; i) read the MLC file and the PDIP from the TPS, ii) calculate the fraction of beam-on time that each point in the IMRT beam is shielded by MLC leaves, iii) interpolate correction factors from look-up tables, iv) create a corrected PDIP image from the product of the original PDIP and the correction factors and write the corrected image to file, v) display, analyse, and export various image datasets. The software tool was developed using the Microsoft Visual Studio.NET framework with the C# compiler. The operation of the software tool was validated. This software provided useful tools for EPID dosimetry research, and it is being utilised and further developed in ongoing EPID dosimetry and IMRT dosimetry projects.


Subject(s)
Algorithms , Radiometry/methods , Radiotherapy Planning, Computer-Assisted/methods , Research Design , Software , Radiotherapy Dosage , Reproducibility of Results , Sensitivity and Specificity , Software Design
16.
Australas Phys Eng Sci Med ; 31(2): 154-9, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18697708

ABSTRACT

The influence of tube voltage (kV) and current (mA) on the resulting relationship of computed tomography number to electron density (CT-ED) was investigated for a wide-bore GE scanner. The influence of kV and mA scan settings were examined in combination with a 16-bit image reconstruction algorithm made available via the scanner software and which allowed resolution of CT numbers for high density materials. By using titanium and stainless steel inserts in an electron density phantom, mA variation was found to have minimal impact on the CT-ED relationship, whereas variation in kV led to significant differences in CT number for the high density materials. The scanner is also equipped with automatic tube-current modulation capabilities. The influence of automatic tube-current modulation on CT number was investigated for a range of materials in a phantom geometry. It was found that tube current modulation has negligible effect on CT number, though the changing dimension of the phantom did influence CT number of an aluminium insert for scans undertaken with both fixed and modulated tube currents. In light of evidence from other studies examining the influence of CT number on dose calculation, it is recommended that scanner settings and specific CT-ED look-up tables be considered when calculations will be required with high-density materials present.


Subject(s)
Radiometry/instrumentation , Radiotherapy, Conformal/instrumentation , Tomography, X-Ray Computed/instrumentation , Dose-Response Relationship, Radiation , Electrons , Equipment Design , Equipment Failure Analysis , Radiometry/methods , Radiotherapy, Conformal/methods , Reproducibility of Results , Sensitivity and Specificity , Tomography, X-Ray Computed/methods
17.
Australas Phys Eng Sci Med ; 26(2): 45-52, 2003 Jun.
Article in English | MEDLINE | ID: mdl-12956185

ABSTRACT

Standard multileaf collimators (MLCs) are now available with 1.0 and 0.5 cm leaf widths. The aim of this work is to compare the dose-undulation and effective penumbra of field edges formed by these MLC leaf widths and to determine how reducing the sampling distance (centre-to-centre distance between adjacent MLC leaves) for the 1.0 cm leaf width compares to the smaller leaf width. The undulation of the 50% isodose line and the 80-20% and 80-30% effective penumbra were compared for a field edge angled at 45 degrees to the MLC leaf motion direction at 8 cm depth. The larger leaf width field was also segmented to form field edges with 0.5, 0.33 and 0.2 cm sampling distance. Random setup variation of 2 mm standard deviation was also incorporated. Dose undulation was 1.5 mm for the 0.5 cm MLC leaf width compared to 4.5 mm for the 1.0 cm width. The 80-20% effective penumbra was 2 mm less for the 0.5 cm leaf width and the 80-30% effective penumbra was approximately 3 mm less. When random setup variation was incorporated the 0.5 cm leaf width isodoses were straight compared with approximately 3 mm undulation for the larger MLC. Reducing the sampling distance for the 1.0 cm MLC leaf width to 0.33 cm resulted in penumbra only slightly greater than the 0.5 cm leaf width and removed the undulation. Effective penumbra and dose undulation are reduced for the 0.5 cm leaf width compared to a 1.0 cm leaf width. Reducing the sampling distance for the 1.0 cm MLC leaf can approximate the 0.5 cm leaf width, at the expense of longer treatment times, and increased quality assurance investment.


Subject(s)
Dose Fractionation, Radiation , Film Dosimetry/methods , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Conformal/instrumentation , Radiotherapy, Conformal/methods , Computer Simulation , Equipment Failure Analysis/methods , Humans , Male , Prostatic Neoplasms/radiotherapy , Quality Control , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/instrumentation , Sensitivity and Specificity
18.
Med Phys ; 27(10): 2242-55, 2000 Oct.
Article in English | MEDLINE | ID: mdl-11099191

ABSTRACT

A multileaf collimator for radiation therapy has been designed that splits each leaf bank into two vertically displaced levels with each level consisting of alternate leaves and leaf spaces. The leaves in the upper level shield the spaces in the lower level. Each level can move laterally, in the direction perpendicular to leaf motion by one leaf width. Following lateral movement of one level, the leaves align with the other level and radiation is transmitted through the collimator as multiple slit fields in a grid pattern. This transmission can be used to form an image of the external anatomy and would enable double-exposure portal images to be acquired much more rapidly than at present. These could potentially be acquired during the treatment delivery. The radiation profiles transmitted for image formation through the collimator design were investigated. Individual and grid pattern slit field profiles formed by tungsten and lead alloy collimators were measured with varying slit width, source-collimator distance, collimator-detector distance, and collimation thickness. The slit width was found to have the major influence on the transmitted profiles. As the slit width decreases the profiles become broader than the geometric slit projection resulting in increasing overlap of adjacent profiles. The overlap results in a modulated image of the external anatomy for small slit widths, rather than a sampled or "grid" image for larger widths. The shielding of this design was found to be adequate provided the leaf faces of the adjacent vertically displaced leaves are at least aligned, therefore an overlap or tongue and groove is not required.


Subject(s)
Radiotherapy, Conformal/instrumentation , Radiotherapy, High-Energy/instrumentation , Equipment Design , Humans , Models, Theoretical
19.
Med Phys ; 27(9): 2048-59, 2000 Sep.
Article in English | MEDLINE | ID: mdl-11011732

ABSTRACT

An algorithm to calculate the presampling modulation transfer function (MTF) of an imaging system from an angled edge image has its own inherent transfer function. Factors such as the angle of the sampling aperture to the edge, registration of edge function profiles using the determined edge angle, differentiation, smoothing, and folding all combine to produce the frequency response of the algorithm. In this work, the profile registration transfer function accounting for an error in the determined edge angle has been derived. This has been incorporated with other, previously reported, algorithm component transfer functions to fully characterize the MTF calculation algorithm. When registering profiles, small errors in the edge angle determination were found to result in large errors in the MTF, as the misalignment errors increase with the number of profiles. For example, registering 50 profiles a 0.07 degree error in a 7 degree edge angle (1% error) produces a 36% error in the MTF at the system cutoff frequency f=f(c) when profiles are oversampled at a frequency f(s)=8f(c)(f(c) is defined as the maximum frequency reproducible without aliasing when sampling at the limiting system Nyquist frequency f(s) = 2f(c)). These results highlight the importance of quantifying the transfer function of the algorithm used to determine an imaging system modulation transfer function. The MTF calculation algorithm and the transfer function analysis have been incorporated into a Windows-based software program to be made available for general use.


Subject(s)
Radiography/methods , Algorithms , Fourier Analysis , Models, Statistical , Software
20.
Australas Radiol ; 42(3): 207-12, 1998 Aug.
Article in English | MEDLINE | ID: mdl-9727243

ABSTRACT

The set-up variation of 11 patients treated supine with radical radiotherapy for carcinoma of the prostate was measured with an electronic portal imaging device to determine the adequacy of set-up techniques and current margins, as well as the need for immobilization. During the treatments 172 images of the anterior fields and 159 images of the left-lateral fields were taken and the errors in treatment placement were measured by template matching. The variation in the superior-inferior direction was small, 1.4-1.6 mm (1 SD), while the medio-lateral variation was 2.8 mm (1 SD). The anterior-posterior variation was largest, 4.6 mm (1 SD) with an offset of 3.3 mm anterior. This anterior offset and large anterior-posterior variation suggests that set-up techniques were not optimal for this direction. The 1 cm margin used was adequate for set-up variation except in a small number of cases, which was mainly due to the anterior trend. Random (treatment-to-treatment) variations were small (1.1-2.3 mm; 1 SD), indicating that immobilization would result in only modest improvement in reproducibility for these supine patients.


Subject(s)
Prostatic Neoplasms/radiotherapy , Radiotherapy, High-Energy/methods , Humans , Immobilization , Male , Prostatic Neoplasms/diagnostic imaging , Radiography , Radiotherapy, Computer-Assisted
SELECTION OF CITATIONS
SEARCH DETAIL
...