Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 58(18): 12099-12111, 2019 Sep 16.
Article in English | MEDLINE | ID: mdl-31448909

ABSTRACT

Two discrete mononuclear complexes, [Tb(bbpen)(NO3)] (I) and [Tb(bbppn)(NO3)] (II), for which H2bbpen = N,N'-bis(2-hydroxybenzyl)-N,N'-bis(pyridin-2-ylmethyl)ethylenediamine and H2bbppn = N,N'-bis(2-hydroxylbenzyl)-N,N'-bis(pyridin-2-ylmethyl)-1,2-propanediamine, were synthesized and characterized by FTIR, Raman, and photoluminescence (PL, steady-state and time-resolved modes) spectroscopy. The attachment of a methyl group to the ethylenediamine portion of the ligand backbone differentiates II from I and acts as a determining feature to both the structural and optical properties of the former. The single-crystal X-ray structure of H2bbppn is described here for the first time, while that of complex II has been redetermined in the monoclinic C2 space group in light of new diffraction data. In II, selective crystallization leads to spontaneous resolution of enantiomeric molecules in different crystals. Absolute emission quantum yields (ϕ) and luminescence excited-state lifetimes (at room temperature and 11 K) were measured for both complexes. Despite their similar molecular structures, I and II exhibit remarkably different ϕ values of 21 ± 2% and 67 ± 7%, respectively, under UV excitation at room temperature. Results of quantum-mechanical (DFT and TD-DFT) calculations and experimental PL measurements also performed for H2bbpen and H2bbppn confirmed that both ligands are suitable to work as "antennas" for TbIII. Considering the 5D4 lifetime profiles and the significantly higher absolute quantum yield of II, it appears that thermally active nonradiative pathways present in I are minimized in II due to differences in the conformation of the ethylenediamine bridge.

2.
Acta Crystallogr E Crystallogr Commun ; 73(Pt 2): 278-285, 2017 Feb 01.
Article in English | MEDLINE | ID: mdl-28217359

ABSTRACT

Two new mononuclear cationic complexes in which the TbIII ion is bis-chelated by the tripodal alcohol 1,1,1-tris-(hy-droxy-meth-yl)propane (H3LEt, C6H14O3) were prepared from Tb(NO3)3·5H2O and had their crystal and mol-ecular structures solved by single-crystal X-ray diffraction analysis after data collection at 100 K. Both products were isolated in reasonable yields from the same reaction mixture by using different crystallization conditions. The higher-symmetry complex dinitratobis[1,1,1-tris-(hy-droxy-meth-yl)propane]-terbium(III) nitrate di-meth-oxy-ethane hemisolvate, [Tb(NO3)2(H3LEt)2]NO3·0.5C4H10O2, 1, in which the lanthanide ion is 10-coordinate and adopts an s-bicapped square-anti-prismatic coordination geometry, contains two bidentate nitrate ions bound to the metal atom; another nitrate ion functions as a counter-ion and a half-mol-ecule of di-meth-oxy-ethane (completed by a crystallographic twofold rotation axis) is also present. In product aqua-nitratobis[1,1,1-tris-(hy-droxy-meth-yl)propane]-terbium(III) dinitrate, [Tb(NO3)(H3LEt)2(H2O)](NO3)2, 2, one bidentate nitrate ion and one water mol-ecule are bound to the nine-coordinate terbium(III) centre, while two free nitrate ions contribute to charge balance outside the tricapped trigonal-prismatic coordination polyhedron. No free water mol-ecule was found in either of the crystal structures and, only in the case of 1, di-meth-oxy-ethane acts as a crystallizing solvent. In both mol-ecular structures, the two tripodal ligands are bent to one side of the coordination sphere, leaving room for the anionic and water ligands. In complex 2, the methyl group of one of the H3LEt ligands is disordered over two alternative orientations. Strong hydrogen bonds, both intra- and inter-molecular, are found in the crystal structures due to the number of different donor and acceptor groups present.

3.
Acta Crystallogr E Crystallogr Commun ; 71(Pt 1): 65-8, 2015 Jan 01.
Article in English | MEDLINE | ID: mdl-25705453

ABSTRACT

The reaction of terbium(III) nitrate penta-hydrate in aceto-nitrile with N,N'-bis-(2-hy-droxy-benz-yl)-N,N'-bis-(pyridin-2-ylmeth-yl)ethyl-enedi-amine (H2bbpen), previously deprotonated with tri-ethyl-amine, produced the mononuclear compound [N,N'-bis-(2-oxidobenzyl-κO)-N,N'-bis-(pyridin-2-ylmethyl-κN)ethylenedi-amine-κ(2) N,N'](nitrato-κ(2) O,O')terbium(III), [Tb(C28H28N4O2)(NO3)]. The mol-ecule lies on a twofold rotation axis and the Tb(III) ion is eight-coordinate with a slightly distorted dodeca-hedral coordination geometry. In the symmetry-unique part of the mol-ecule, the pyridine and benzene rings are both essentially planar and form a dihedral angle of 61.42 (7)°. In the mol-ecular structure, the N4O4 coordination environment is defined by the hexa-dentate bbpen ligand and the bidentate nitrate anion. In the crystal, a weak C-H⋯O hydrogen bond links mol-ecules into a two-dimensional network parallel to (001).

4.
Dalton Trans ; 40(13): 3198-210, 2011 Apr 07.
Article in English | MEDLINE | ID: mdl-21347465

ABSTRACT

The reversible thermochromic behaviour of homoleptic [{V(OR)(4)}(n)] complexes in solution [R = Pr(i) (product I), Bu(s) (B(s)), Nep (N) and Cy (C)] is accounted for the existence of an aggregation equilibrium involving dimeric and monomeric species in which vanadium(iv) is respectively five- and four-coordinate. Bulky R groups such as Bu(t) and Pe(t) (tert-pentoxide) prevent aggregation and therefore give rise to exclusively mononuclear compounds (B(t) and P(t), respectively) that are not thermochromic. The complexes and their temperature-dependent interconversion were characterised by single crystal X-ray diffractometry, magnetic susceptibility measurements and electronic, FTIR and EPR spectroscopies in a wide temperature range. Equilibrium constants and enthalpy and entropy changes for the dimerization reactions have been determined and compared with literature data.

SELECTION OF CITATIONS
SEARCH DETAIL
...