Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Phys ; 15(9): 935-940, 2019 Jun 18.
Article in English | MEDLINE | ID: mdl-31485254

ABSTRACT

Many future quantum technologies rely on the generation of entangled states. Quantum devices will require verification of their operation below some error threshold, but the reliable detection of quantum entanglement remains a considerable challenge for large-scale quantum systems. Well-established techniques for this task rely on the measurement of expectation values of entanglement witnesses, which however require many measurements settings to be extracted. Here we develop a generic framework for efficient entanglement detection that translates any entanglement witness into a resource-efficient probabilistic scheme, whose confidence grows exponentially with the number of individual detection events, namely copies of the quantum state. To benchmark our findings, we experimentally verify the presence of entanglement in a photonic six-qubit cluster state generated using three single-photon sources operating at telecommunication wavelengths. We find that the presence of entanglement can be certified with at least 99:74% confidence by detecting 20 copies of the quantum state. Additionally, we show that genuine six-qubit entanglement is verified with at least 99% confidence by using 112 copies of the state. Our protocol can be carried out with a remarkably low number of copies and in the presence of experimental imperfections, making it a practical and applicable method to verify large-scale quantum devices.

2.
Appl Opt ; 57(3): 377-381, 2018 Jan 20.
Article in English | MEDLINE | ID: mdl-29400784

ABSTRACT

The vast development of integrated quantum photonic technology enables the implementation of compact and stable interferometric networks. In particular, laser-written waveguide structures allow for complex 3D circuits and polarization-encoded qubit manipulation. However, the main limitation in the scaling up of integrated quantum devices is the single-photon loss due to mode-profile mismatch when coupling to standard fibers or other optical platforms. Here we demonstrate tapered waveguide structures realized by an adapted femtosecond laser writing technique. We show that coupling to standard single-mode fibers can be enhanced up to 77% while keeping the fabrication effort negligible. This improvement provides an important step for processing multiphoton states on chip.

3.
Opt Express ; 26(3): 3286-3302, 2018 Feb 05.
Article in English | MEDLINE | ID: mdl-29401859

ABSTRACT

Multi-photon state generation is of great interest for near-future quantum simulation and quantum computation experiments. To-date spontaneous parametric down-conversion is still the most promising process, even though two major impediments still exist: accidental photon noise (caused by the probabilistic non-linear process) and imperfect single-photon purity (arising from spectral entanglement between the photon pairs). In this work, we overcome both of these difficulties by (1) exploiting a passive temporal multiplexing scheme and (2) carefully optimizing the spectral properties of the down-converted photons using periodically-poled KTP crystals. We construct two down-conversion sources in the telecom wavelength regime, finding spectral purities of > 91%, while maintaining high four-photon count rates. We use single-photon grating spectrometers together with superconducting nanowire single-photon detectors to perform a detailed characterization of our multi-photon source. Our methods provide practical solutions to produce high-quality multi-photon states, which are in demand for many quantum photonics applications.

4.
Sci Rep ; 2: 968, 2012.
Article in English | MEDLINE | ID: mdl-23236588

ABSTRACT

The simulation of open quantum dynamics has recently allowed the direct investigation of the features of system-environment interaction and of their consequences on the evolution of a quantum system. Such interaction threatens the quantum properties of the system, spoiling them and causing the phenomenon of decoherence. Sometimes however a coherent exchange of information takes place between system and environment, memory effects arise and the dynamics of the system becomes non-Markovian. Here we report the experimental realisation of a non-Markovian process where system and environment are coupled through a simulated transverse Ising model. By engineering the evolution in a photonic quantum simulator, we demonstrate the role played by system-environment correlations in the emergence of memory effects.

SELECTION OF CITATIONS
SEARCH DETAIL
...