Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
Cancers (Basel) ; 16(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-39001427

ABSTRACT

For many patients, the cancer continuum includes a syndrome known as cancer-associated cachexia (CAC), which encompasses the unintended loss of body weight and muscle mass, and is often associated with fat loss, decreased appetite, lower tolerance and poorer response to treatment, poor quality of life, and reduced survival. Unfortunately, there are no effective therapeutic interventions to completely reverse cancer cachexia and no FDA-approved pharmacologic agents; hence, new approaches are urgently needed. In May of 2022, researchers and clinicians from Moffitt Cancer Center held an inaugural retreat on CAC that aimed to review the state of the science, identify knowledge gaps and research priorities, and foster transdisciplinary collaborative research projects. This review summarizes research priorities that emerged from the retreat, examples of ongoing collaborations, and opportunities to move science forward. The highest priorities identified include the need to (1) evaluate patient-reported outcome (PRO) measures obtained in clinical practice and assess their use in improving CAC-related outcomes; (2) identify biomarkers (imaging, molecular, and/or behavioral) and novel analytic approaches to accurately predict the early onset of CAC and its progression; and (3) develop and test interventions (pharmacologic, nutritional, exercise-based, and through mathematical modeling) to prevent CAC progression and improve associated symptoms and outcomes.

2.
bioRxiv ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38979203

ABSTRACT

Our study elucidates functional roles for conserved cis-elements associated with the evolution of mammalian hibernation. Genomic analyses found topologically associated domains (TADs) that disproportionately accumulated convergent genomic changes in hibernators, including the TAD for the Fat Mass & Obesity (Fto) locus. Some hibernation-linked cis-elements in this TAD form regulatory contacts with multiple neighboring genes. Knockout mice for these cis-elements exhibit Fto, Irx3, and Irx5 gene expression changes, impacting hundreds of genes downstream. Profiles of pre-torpor, torpor, and post-torpor phenotypes found distinct roles for each cis-element in metabolic control, while a high caloric diet uncovered different obesogenic effects. One cis-element promoting a lean phenotype influences foraging behaviors throughout life, affecting specific behavioral sequences. Thus, convergent evolution in hibernators pinpoints functional genetic mechanisms of mammalian metabolic control.

3.
bioRxiv ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38979381

ABSTRACT

Elucidating the genetic basis of mammalian metabolism could help define mechanisms central to health and disease. Here, we define conserved cis-regulatory elements (CREs) and programs for mammalian metabolic control. We delineate gene expression and chromatin responses in the mouse hypothalamus for 7 steps of the Fed-to-Fasted-to-Refed (FFR) response process. Comparative genomics of hibernating versus non-hibernating lineages then illuminates cis-elements showing convergent changes in hibernators. Hibernators accumulated loss-of-function effects for specific CREs regulating hypothalamic FFR responses. Multi-omics approaches pinpoint key CREs, genes, regulatory programs, and cell types in the divergence of hibernating and homeothermic lineages. The refeeding period after extended fasting is revealed as one critical period of chromatin remodeling with convergent genomic changes. This genetic framework is a step toward harnessing hibernator adaptations in medicine.

4.
Bull Volcanol ; 86(2): 10, 2024.
Article in English | MEDLINE | ID: mdl-38205134

ABSTRACT

The simultaneous or sequential occurrence of several hazards-be they of natural or anthropogenic sources-can interact to produce unexpected compound hazards and impacts. Since success in responding to volcanic crises is often conditional on accurate identification of spatiotemporal patterns of hazard prior to an eruption, ignoring these interactions can lead to a misrepresentation or misinterpretation of the risk and, during emergencies, ineffective management priorities. The 2021 eruption of Tajogaite volcano on the island of La Palma, Canary Islands (Spain), was an 86 day-long hybrid explosive-effusive eruption that demonstrated the challenges of managing volcanic crises associated with the simultaneous emission of lava, tephra and volcanic gases. Here, we present the result of a small-scale impact assessment conducted during three-field deployments to investigate how tephra fallout and lava flow inundation interacted to cause compound physical impact on buildings. The study area was a neighbourhood of 30 buildings exposed to tephra fallout during the entire eruption and by a late-stage, short-lived lava flow. Observations highlight, on one hand, the influence of clean-up operations and rainfall on the impact of tephra fallout and, on the other hand, the importance of the dynamics of lava flow emplacement in controlling impact mechanisms. Overall, results provide an evidence-based insight into impact sequences when two primary hazards are produced simultaneously and demonstrate the importance of considering this aspect when implementing risk mitigation strategies for future long-lasting, hybrid explosive-effusive eruptions in urban environments. Supplementary Information: The online version contains supplementary material available at 10.1007/s00445-023-01700-w.

5.
iScience ; 26(5): 106761, 2023 May 19.
Article in English | MEDLINE | ID: mdl-37216088

ABSTRACT

Foraging in animals relies on innate decision-making heuristics that can result in suboptimal cognitive biases in some contexts. The mechanisms underlying these biases are not well understood, but likely involve strong genetic effects. To explore this, we studied fasted mice using a naturalistic foraging paradigm and discovered an innate cognitive bias called "second-guessing." This involves repeatedly investigating an empty former food patch instead of consuming available food, which hinders the mice from maximizing feeding benefits. The synaptic plasticity gene Arc is revealed to play a role in this bias, as Arc-deficient mice did not exhibit second-guessing and consumed more food. In addition, unsupervised machine learning decompositions of foraging identified specific behavior sequences, or "modules", that are affected by Arc. These findings highlight the genetic basis of cognitive biases in decision making, show links between behavior modules and cognitive bias, and provide insight into the ethological roles of Arc in naturalistic foraging.

6.
Cell Rep ; 42(1): 111945, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36640362

ABSTRACT

Genes are typically assumed to express both parental alleles similarly, yet cell lines show random allelic expression (RAE) for many autosomal genes that could shape genetic effects. Thus, understanding RAE in human tissues could improve our understanding of phenotypic variation. Here, we develop a methodology to perform genome-wide profiling of RAE and biallelic expression in GTEx datasets for 832 people and 54 tissues. We report 2,762 autosomal genes with some RAE properties similar to randomly inactivated X-linked genes. We found that RAE is associated with rapidly evolving regions in the human genome, adaptive signaling processes, and genes linked to age-related diseases such as neurodegeneration and cancer. We define putative mechanistic subtypes of RAE distinguished by gene overlaps on sense and antisense DNA strands, aggregation in clusters near telomeres, and increased regulatory complexity and inputs compared with biallelic genes. We provide foundations to study RAE in human phenotypes, evolution, and disease.


Subject(s)
Chromosomes , Human Body , Humans , Adult , Alleles , Phenotype , Cell Line
7.
Cell Rep ; 38(10): 110500, 2022 03 08.
Article in English | MEDLINE | ID: mdl-35263575

ABSTRACT

Noncanonical genomic imprinting can cause biased expression of one parental allele in a tissue; however, the functional relevance of such biases is unclear. To investigate ethological roles for noncanonical imprinting in dopa decarboxylase (Ddc) and tyrosine hydroxylase (Th), we use machine learning to decompose naturalistic foraging in maternal and paternal allele mutant heterozygous mice. We uncover distinct roles for the maternal versus paternal alleles on foraging, where maternal alleles affect sons while daughters are under paternal allelic control. Each parental allele controls specific action sequences reflecting decisions in naive or familiar contexts. The maternal Ddc allele is preferentially expressed in subsets of hypothalamic GABAergic neurons, while the paternal allele predominates in subsets of adrenal cells. Each Ddc allele affects distinct molecular and endocrine components of the brain-adrenal axis. Thus, monoaminergic noncanonical imprinting has ethological roles in foraging and endocrine functions and operates by affecting discrete subsets of cells.


Subject(s)
Brain , Genomic Imprinting , Alleles , Animals , Brain/metabolism , Heterozygote , Mice
8.
Mol Biol Evol ; 38(9): 3606-3620, 2021 08 23.
Article in English | MEDLINE | ID: mdl-33944920

ABSTRACT

Disease susceptibility and resistance are important factors for the conservation of endangered species, including elephants. We analyzed pathology data from 26 zoos and report that Asian elephants have increased neoplasia and malignancy prevalence compared with African bush elephants. This is consistent with observed higher susceptibility to tuberculosis and elephant endotheliotropic herpesvirus (EEHV) in Asian elephants. To investigate genetic mechanisms underlying disease resistance, including differential responses between species, among other elephant traits, we sequenced multiple elephant genomes. We report a draft assembly for an Asian elephant, and defined 862 and 1,017 conserved potential regulatory elements in Asian and African bush elephants, respectively. In the genomes of both elephant species, conserved elements were significantly enriched with genes differentially expressed between the species. In Asian elephants, these putative regulatory regions were involved in immunity pathways including tumor-necrosis factor, which plays an important role in EEHV response. Genomic sequences of African bush, forest, and Asian elephant genomes revealed extensive sequence conservation at TP53 retrogene loci across three species, which may be related to TP53 functionality in elephant cancer resistance. Positive selection scans revealed outlier genes related to additional elephant traits. Our study suggests that gene regulation plays an important role in the differential inflammatory response of Asian and African elephants, leading to increased infectious disease and cancer susceptibility in Asian elephants. These genomic discoveries can inform future functional and translational studies aimed at identifying effective treatment approaches for ill elephants, which may improve conservation.


Subject(s)
Elephants , Herpesviridae Infections , Herpesviridae , Animals , Elephants/genetics , Endangered Species , Herpesviridae/genetics , Herpesviridae Infections/epidemiology
9.
Risk Anal ; 41(10): 1759-1781, 2021 10.
Article in English | MEDLINE | ID: mdl-33665886

ABSTRACT

A common concern about volcanic unrest is that the communication of information about increasing volcanic alert levels (VALs) to the public could cause serious social and economic impacts even if an eruption does not occur. To test this statement, this study examined housing prices and business patterns from 1974-2016 in volcanic regions with "very-high" threat designations from the U.S. Geological Survey (USGS)-Long Valley Caldera (LVC), CA (caldera); Mount St. Helens (MSH), Washington (stratovolcano); and Kilauea, Hawai'i (shield volcano). To compare economic trends in nonvolcanic regions that are economically dependent on tourism, Steamboat Springs, CO, served as a control as it is a ski-tourism community much like Mammoth Lakes in LVC. Autoregressive distributed lag (ARDL) models predicted that housing prices were negatively affected by VALs at LVC from 1982-1983 and 1991-1997. While VALs associated with unrest and eruptions included in this study both had short-term indirect effects on housing prices and business indicators (e.g., number of establishments, employment, and salary), these notifications were not strong predictors of long-term economic trends. Our findings suggest that these indirect effects result from both eruptions with higher level VALs and from unrest involving lower-level VAL notifications that communicate a change in volcanic activity but do not indicate that an eruption is imminent or underway. This provides evidence concerning a systemic issue in disaster resilience. While disaster relief is provided by the U.S. federal government for direct impacts associated with disaster events that result in presidential major disaster declarations, there is limited or no assistance for indirect effects to businesses and homeowners that may follow volcanic unrest with no resulting direct physical losses. The fact that periods of volcanic unrest preceding eruption are often protracted in comparison to precursory periods for other hazardous events (e.g., earthquakes, hurricanes, flooding) makes the issue of indirect effects particularly important in regions susceptible to volcanic activity.

10.
Nat Chem Biol ; 17(4): 394-402, 2021 04.
Article in English | MEDLINE | ID: mdl-33462496

ABSTRACT

Efficient genome editing methods are essential for biotechnology and fundamental research. Homologous recombination (HR) is the most versatile method of genome editing, but techniques that rely on host RecA-mediated pathways are inefficient and laborious. Phage-encoded single-stranded DNA annealing proteins (SSAPs) improve HR 1,000-fold above endogenous levels. However, they are not broadly functional. Using Escherichia coli, Lactococcus lactis, Mycobacterium smegmatis, Lactobacillus rhamnosus and Caulobacter crescentus, we investigated the limited portability of SSAPs. We find that these proteins specifically recognize the C-terminal tail of the host's single-stranded DNA-binding protein (SSB) and are portable between species only if compatibility with this host domain is maintained. Furthermore, we find that co-expressing SSAPs with SSBs can significantly improve genome editing efficiency, in some species enabling SSAP functionality even without host compatibility. Finally, we find that high-efficiency HR far surpasses the mutational capacity of commonly used random mutagenesis methods, generating exceptional phenotypes that are inaccessible through sequential nucleotide conversions.


Subject(s)
DNA-Binding Proteins/metabolism , Gene Editing/methods , Homologous Recombination/physiology , Amino Acid Sequence , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacteriophages/genetics , Bacteriophages/metabolism , Caulobacter crescentus/metabolism , DNA/chemistry , DNA/genetics , DNA Repair , DNA, Single-Stranded/metabolism , DNA-Binding Proteins/chemistry , Escherichia coli/metabolism , Homologous Recombination/genetics , Lactococcus/metabolism , Mycobacterium smegmatis/metabolism , Protein Domains/genetics
11.
Proc Natl Acad Sci U S A ; 117(24): 13689-13698, 2020 06 16.
Article in English | MEDLINE | ID: mdl-32467157

ABSTRACT

Exploiting bacteriophage-derived homologous recombination processes has enabled precise, multiplex editing of microbial genomes and the construction of billions of customized genetic variants in a single day. The techniques that enable this, multiplex automated genome engineering (MAGE) and directed evolution with random genomic mutations (DIvERGE), are however, currently limited to a handful of microorganisms for which single-stranded DNA-annealing proteins (SSAPs) that promote efficient recombineering have been identified. Thus, to enable genome-scale engineering in new hosts, efficient SSAPs must first be found. Here we introduce a high-throughput method for SSAP discovery that we call "serial enrichment for efficient recombineering" (SEER). By performing SEER in Escherichia coli to screen hundreds of putative SSAPs, we identify highly active variants PapRecT and CspRecT. CspRecT increases the efficiency of single-locus editing to as high as 50% and improves multiplex editing by 5- to 10-fold in E. coli, while PapRecT enables efficient recombineering in Pseudomonas aeruginosa, a concerning human pathogen. CspRecT and PapRecT are also active in other, clinically and biotechnologically relevant enterobacteria. We envision that the deployment of SEER in new species will pave the way toward pooled interrogation of genotype-to-phenotype relationships in previously intractable bacteria.


Subject(s)
Bacterial Proteins/genetics , Escherichia coli/genetics , Pseudomonas aeruginosa/genetics , Recombination, Genetic , Genetic Engineering , Genome, Bacterial , Mutation
12.
Cell Rep ; 29(9): 2608-2620.e4, 2019 11 26.
Article in English | MEDLINE | ID: mdl-31775032

ABSTRACT

Obesity is a clinical problem and an important adaptation in many species. Hibernating mammals, for example, become obese, insulin resistant, and hyperinsulinemic to store fat. Here, we combine comparative phylogenomics with large-scale human genome data to uncover candidate cis elements regulating mammalian obesity. Our study examines genetic elements conserved across non-hibernating mammals to identify genome-wide patterns of accelerated evolution in hibernators from different clades. The results reveal the existence of parallel accelerated regions (pARs) in distant hibernators. Hibernator pARs are disproportionately located near human obesity susceptibility genes compared to random conserved regions, hibernator ARs that are not parallel, and non-hibernator pARs. We found 364 candidate obesity-regulating cis elements and genetic circuits in different cell types. The Fat Mass and Obesity (FTO) locus, the strongest genetic risk factor for human obesity, is an enriched site for hibernator pARs. Our results uncover noncoding cis elements with putative roles in obesity and hibernation.


Subject(s)
Adaptation, Physiological/physiology , Epigenomics/methods , Gene Regulatory Networks/genetics , Hibernation/physiology , Obesity/genetics , Animals , Evolution, Molecular , Humans
13.
Cell Rep ; 28(7): 1814-1829.e6, 2019 08 13.
Article in English | MEDLINE | ID: mdl-31412249

ABSTRACT

Complex ethological behaviors could be constructed from finite modules that are reproducible functional units of behavior. Here, we test this idea for foraging and develop methods to dissect rich behavior patterns in mice. We uncover discrete modules of foraging behavior reproducible across different strains and ages, as well as nonmodular behavioral sequences. Modules differ in terms of form, expression frequency, and expression timing and are expressed in a probabilistically determined order. Modules shape economic patterns of feeding, exposure, activity, and perseveration responses. The modular architecture of foraging changes developmentally, and different developmental, genetic, and parental effects are found to shape the expression of specific modules. Dissecting modules from complex patterns is powerful for phenotype analysis. We discover that both parental alleles of the imprinted Prader-Willi syndrome gene Magel2 are functional in mice but regulate different modules. Our study found that complex economic patterns are built from finite, genetically controlled modules.


Subject(s)
Antigens, Neoplasm/metabolism , Behavior, Animal , Brain/pathology , Gene Expression Regulation, Developmental , Gene Regulatory Networks , Prader-Willi Syndrome/pathology , Proteins/metabolism , Animals , Antigens, Neoplasm/genetics , Brain/metabolism , Female , Genomic Imprinting , Humans , Mice , Mice, Inbred C57BL , Phenotype , Prader-Willi Syndrome/metabolism , Prader-Willi Syndrome/psychology , Proteins/genetics
14.
Curr Opin Neurobiol ; 59: 69-78, 2019 12.
Article in English | MEDLINE | ID: mdl-31153086

ABSTRACT

Typically, it is assumed that the maternal and paternal alleles for most genes are equally expressed. Known exceptions include canonical imprinted genes, random X-chromosome inactivation, olfactory receptors and clustered protocadherins. Here, we highlight recent studies showing that allele-specific expression is frequent in the genome and involves subtypes of epigenetic allelic effects that differ in terms of heritability, clonality and stability over time. Different forms of epigenetic allele regulation could have different roles in brain development, function, and disease. An emerging area involves understanding allelic effects in a cell-type and developmental stage-specific manner and determining how these effects influence the impact of genetic variants and mutations on the brain. A deeper understanding of epigenetics at the allele and cellular level in the brain could help clarify the mechanisms underlying phenotypic variance.


Subject(s)
Epigenesis, Genetic , Alleles , Brain , Genomic Imprinting , X Chromosome Inactivation
15.
Trends Neurosci ; 41(12): 925-937, 2018 12.
Article in English | MEDLINE | ID: mdl-30098802

ABSTRACT

The benefits of diploidy are considered to involve masking partially recessive mutations and increasing genetic diversity. Here, we review new studies showing evidence for diverse allele-specific expression and epigenetic states in mammalian brain cells, which suggest that diploidy expands the landscape of gene regulatory and expression programs in cells. Allele-specific expression has been thought to be restricted to a few specific classes of genes. However, new studies show novel genomic imprinting effects that are brain-region-, cell-type- and age-dependent. In addition, novel forms of random monoallelic expression that impact many autosomal genes have been described in vitro and in vivo. We discuss the implications for understanding the benefits of diploidy, and the mechanisms shaping brain development, function, and disease.


Subject(s)
Alleles , Brain/physiology , Diploidy , Epigenomics , Gene Expression Regulation/physiology , Animals , Humans
16.
PLoS One ; 13(6): e0197464, 2018.
Article in English | MEDLINE | ID: mdl-29912879

ABSTRACT

BACKGROUND: N-glycolylneuraminic acid (Neu5Gc) is a non-human red-meat-derived sialic acid immunogenic to humans. Neu5Gc can be metabolically incorporated into glycan chains on human endothelial and epithelial surfaces. This represents the first example of a "xeno-autoantigen", against which circulating human "xeno-autoantibodies" can react. The resulting inflammation ("xenosialitis") has been demonstrated in human-like Neu5Gc-deficient mice and contributed to carcinoma progression via antibody-mediated inflammation. Anti-Neu5Gc antibodies have potential as biomarkers for diseases associated with red meat consumption such as carcinomas, atherosclerosis, and type 2 diabetes. METHODS: ELISA assays measured antibodies against Neu5Gc or Neu5Gc-glycans in plasma or serum samples from the Nurses' Health Studies, the Health Professionals Follow-up Study, and the European Prospective Investigation into Cancer and Nutrition, including inter-assay reproducibility, stability with delayed sample processing, and within-person reproducibility over 1-3 years in archived samples. We also assessed associations between antibody levels and coronary artery disease risk (CAD) or red meat intake. A glycan microarray was used to detected antibodies against multiple Neu5Gc-glycan epitopes. A nested case-control study design assessed the association between total anti-Neu5Gc antibodies detected in the glycan array assay and the risk of colorectal cancer (CRC). RESULTS: ELISA assays showed a wide range of anti-Neu5Gc responses and good inter-assay reproducibility, stability with delayed sample processing, and within-person reproducibility over time, but these antibody levels did not correlate with CAD risk or red meat intake. Antibodies against Neu5Gc alone or against individual Neu5Gc-bearing epitopes were also not associated with colorectal cancer (CRC) risk. However, a sialoglycan microarray study demonstrated positive association with CRC risk when the total antibody responses against all Neu5Gc-glycans were combined. Individuals in the top quartile of total anti-Neu5Gc IgG antibody concentrations had nearly three times the risk compared to those in the bottom quartile (Multivariate Odds Ratio comparing top to bottom quartile: 2.98, 95% CI: 0.80, 11.1; P for trend = 0.02). CONCLUSIONS: Further work harnessing the utility of these anti-Neu5Gc antibodies as biomarkers in red meat-associated diseases must consider diversity in individual antibody profiles against different Neu5Gc-bearing glycans. Traditional ELISA assays for antibodies directed against Neu5Gc alone, or against specific Neu5Gc-glycans may not be adequate to define risk associations. Our finding of a positive association of total anti-Neu5Gc antibodies with CRC risk also warrants confirmation in larger prospective studies.


Subject(s)
Antibodies/immunology , Colorectal Neoplasms/immunology , Neuraminic Acids/immunology , Polysaccharides/immunology , Adult , Aged , Atherosclerosis/blood , Atherosclerosis/immunology , Atherosclerosis/pathology , Autoantigens/immunology , Colorectal Neoplasms/blood , Colorectal Neoplasms/epidemiology , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/immunology , Epitopes/immunology , Female , Humans , Middle Aged , N-Acetylneuraminic Acid/immunology , Neuraminic Acids/isolation & purification , Polysaccharides/isolation & purification , Red Meat/adverse effects , Risk Factors
17.
Proc Natl Acad Sci U S A ; 115(21): E4940-E4949, 2018 05 22.
Article in English | MEDLINE | ID: mdl-29735666

ABSTRACT

Although the genetic code is redundant, synonymous codons for the same amino acid are not used with equal frequencies in genomes, a phenomenon termed "codon usage bias." Previous studies have demonstrated that synonymous changes in a coding sequence can exert significant cis effects on the gene's expression level. However, whether the codon composition of a gene can also affect the translation efficiency of other genes has not been thoroughly explored. To study how codon usage bias influences the cellular economy of translation, we massively converted abundant codons to their rare synonymous counterpart in several highly expressed genes in Escherichia coli This perturbation reduces both the cellular fitness and the translation efficiency of genes that have high initiation rates and are naturally enriched with the manipulated codon, in agreement with theoretical predictions. Interestingly, we could alleviate the observed phenotypes by increasing the supply of the tRNA for the highly demanded codon, thus demonstrating that the codon usage of highly expressed genes was selected in evolution to maintain the efficiency of global protein translation.


Subject(s)
Codon/genetics , Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Protein Biosynthesis , Proteome/analysis , RNA, Transfer/metabolism , Transcriptome , Escherichia coli/genetics , Escherichia coli/growth & development , Escherichia coli Proteins/genetics , Evolution, Molecular , Open Reading Frames , Proteome/genetics , RNA, Transfer/genetics
18.
Cell Rep ; 22(10): 2742-2755, 2018 03 06.
Article in English | MEDLINE | ID: mdl-29514101

ABSTRACT

The identity of most functional elements in the mammalian genome and the phenotypes they impact are unclear. Here, we perform a genome-wide comparative analysis of patterns of accelerated evolution in species with highly distinctive traits to discover candidate functional elements for clinically important phenotypes. We identify accelerated regions (ARs) in the elephant, hibernating bat, orca, dolphin, naked mole rat, and thirteen-lined ground squirrel lineages in mammalian conserved regions, uncovering ∼33,000 elements that bind hundreds of different regulatory proteins in humans and mice. ARs in the elephant, the largest land mammal, are uniquely enriched near elephant DNA damage response genes. The genomic hotspot for elephant ARs is the E3 ligase subunit of the Fanconi anemia complex, a master regulator of DNA repair. Additionally, ARs in the six species are associated with specific human clinical phenotypes that have apparent concordance with overt traits in each species.


Subject(s)
Evolution, Molecular , Mutation/genetics , Neoplasms/genetics , Quantitative Trait, Heritable , Animals , Conserved Sequence , DNA Damage , DNA Repair/genetics , Epigenesis, Genetic , Female , Genetic Loci , Genome , Humans , Lymphocytes/metabolism , Mammals/genetics , Mice , Nucleotide Motifs/genetics , Phenotype , Species Specificity , Transcription Factors/metabolism
19.
F1000Res ; 6: 2108, 2017.
Article in English | MEDLINE | ID: mdl-29259778

ABSTRACT

Epigenetic mechanisms that cause maternally and paternally inherited alleles to be expressed differently in offspring have the potential to radically change our understanding of the mechanisms that shape disease susceptibility, phenotypic variation, cell fate, and gene expression. However, the nature and prevalence of these effects in vivo have been unclear and are debated. Here, I consider major new studies of epigenetic allelic effects in cell lines and primary cells and in vivo. The emerging picture is that these effects take on diverse forms, and this review attempts to clarify the nature of the different forms that have been uncovered for genomic imprinting and random monoallelic expression (RME). I also discuss apparent discrepancies between in vitro and in vivo studies. Importantly, multiple studies suggest that allelic effects are prevalent and can be developmental stage- and cell type-specific. I propose some possible functions and consider roles for allelic effects within the broader context of gene regulatory networks, cellular diversity, and plasticity. Overall, the field is ripe for discovery and is in need of mechanistic and functional studies.

20.
Methods ; 121-122: 16-28, 2017 05 15.
Article in English | MEDLINE | ID: mdl-28351759

ABSTRACT

Genome editing using the CRISPR/Cas9 system requires the presence of guide RNAs bound to the Cas9 endonuclease as a ribonucleoprotein (RNP) complex in cells, which cleaves the host cell genome at sites specified by the guide RNAs. New genetic material may be introduced during repair of the double-stranded break via homology dependent repair (HDR) if suitable DNA templates are delivered with the CRISPR components. Early methods used plasmid or viral vectors to make these components in the host cell, however newer approaches using recombinant Cas9 protein with synthetic guide RNAs introduced directly as an RNP complex into cells shows faster onset of action with fewer off-target effects. This approach also enables use of chemically modified synthetic guide RNAs that have improved nuclease stability and reduces the risk of triggering an innate immune response in the host cell. This article provides detailed methods for genome editing using the RNP approach with synthetic guide RNAs using lipofection or electroporation in mammalian cells or using microinjection in murine zygotes, with or without addition of a single-stranded HDR template DNA.


Subject(s)
Bacterial Proteins/genetics , CRISPR-Cas Systems , Endonucleases/genetics , Gene Editing/methods , Gene Transfer Techniques , RNA, Guide, Kinetoplastida/genetics , Ribonucleoproteins/genetics , Animals , Bacterial Proteins/metabolism , Base Sequence , CRISPR-Associated Protein 9 , Clustered Regularly Interspaced Short Palindromic Repeats , DNA/genetics , DNA/metabolism , Electroporation , Endonucleases/metabolism , Gene Targeting/methods , Genome , HEK293 Cells , Humans , Jurkat Cells , Lipids/chemistry , Mice , Microinjections , RNA, Guide, Kinetoplastida/chemical synthesis , RNA, Guide, Kinetoplastida/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Recombinational DNA Repair , Ribonucleoproteins/metabolism , Zygote/cytology , Zygote/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...