Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
F S Rep ; 5(1): 72-79, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38524201

ABSTRACT

Objective: To compare ribonucleic acid (RNA) quantity and purity in tissue collected with different endometrial sampling methods to establish the optimal tool for use in endometrial gene expression studies. Design: Observational study. Setting: University hospital. Patients: Fourteen patients with submucosal leiomyomas. Interventions: Unguided biopsies were obtained using a low-pressure suction device before hysteroscopy from 14 patients with submucosal leiomyomas followed by guided biopsy with a resectoscope loop. Fifty-seven samples were collected: 25 obtained using a suction device and 32 with a loop. Main Outcome Measures: Total biopsy weight, RNA purity, and RNA yield for each collection method. After complementary deoxyribonucleic acid synthesis, HOXA10 expression was measured by quantitative polymerase chain reaction in the endometrium overlying and remote from the leiomyoma, as similar expression throughout the cavity was a prerequisite for the use of unguided biopsy method. Results: The median weight of the samples was significantly larger when obtained with the low-pressure suction device than with the resectoscope loop (153 vs. 20 mg). The RNA yield was similar (suction curette, 1,625 ng/mg; resectoscope loop, 1,779 ng/mg). The A260-to-A280 ratio was satisfactory for 94.7 % of the samples, with no difference between the groups. The endometrial expression of HOXA10 was similar in areas overlying the leiomyoma compared with that in remote endometrial sites (2-ΔCt = 0.0224 vs. 0.0225). Conclusions: Low-pressure endometrial suction devices provide tissue samples with acceptable RNA purity and quantity for gene expression studies. The expression of HOXA10 did not differ between endometrial sampling sites even in the presence of leiomyomas.

2.
Nat Biotechnol ; 42(4): 591-596, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37349523

ABSTRACT

Current N6-methyladenosine (m6A) mapping methods need large amounts of RNA or are limited to cultured cells. Through optimized sample recovery and signal-to-noise ratio, we developed picogram-scale m6A RNA immunoprecipitation and sequencing (picoMeRIP-seq) for studying m6A in vivo in single cells and scarce cell types using standard laboratory equipment. We benchmark m6A mapping on titrations of poly(A) RNA and embryonic stem cells and in single zebrafish zygotes, mouse oocytes and embryos.


Subject(s)
RNA , Zebrafish , Animals , Mice , Zebrafish/genetics , Zebrafish/metabolism , RNA/genetics , RNA, Messenger/genetics , Embryonic Stem Cells , Cells, Cultured
3.
Nat Struct Mol Biol ; 30(5): 703-709, 2023 05.
Article in English | MEDLINE | ID: mdl-37081317

ABSTRACT

Despite the significance of N6-methyladenosine (m6A) in gene regulation, the requirement for large amounts of RNA has hindered m6A profiling in mammalian early embryos. Here we apply low-input methyl RNA immunoprecipitation and sequencing to map m6A in mouse oocytes and preimplantation embryos. We define the landscape of m6A during the maternal-to-zygotic transition, including stage-specifically expressed transcription factors essential for cell fate determination. Both the maternally inherited transcripts to be degraded post fertilization and the zygotically activated genes during zygotic genome activation are widely marked by m6A. In contrast to m6A-marked zygotic ally-activated genes, m6A-marked maternally inherited transcripts have a higher tendency to be targeted by microRNAs. Moreover, RNAs derived from retrotransposons, such as MTA that is maternally expressed and MERVL that is transcriptionally activated at the two-cell stage, are largely marked by m6A. Our results provide a foundation for future studies exploring the regulatory roles of m6A in mammalian early embryonic development.


Subject(s)
Gene Expression Regulation, Developmental , MicroRNAs , Animals , Mice , Blastocyst , Oocytes/metabolism , Embryonic Development/genetics , Zygote , MicroRNAs/metabolism , Mammals/genetics
4.
Reprod Biomed Online ; 42(2): 375-383, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33309389

ABSTRACT

RESEARCH QUESTION: How does follicle distribution evolve in the human ovarian cortex between the ages of 20 and 35 years? DESIGN: Fragments of ovarian cortex from women undergoing unilateral oophorectomy for fertility preservation were obtained for quantitative histological assessment, including recording the two-dimensional coordinates of the follicles. Data were analysed using spatial statistical methods. RESULTS: A total of 53 ovarian cortex tissue samples, containing 1-803 follicles each, were obtained from 14 women aged 20-35 years. Primordial and transitory follicles lay in a clustered manner in the human ovarian cortex, with an average cluster radius of around 270 µm (95% confidence interval 154-377 µm; n = 49). Follicle density declined with age (P = 0.006, n = 13), and the distance from the nearest neighbouring follicle increased (P = 0.004, n = 13). Cluster radius decreased with age (P = 0.02, n = 13), but the degree of clustering tended to increase (P = 0.11, n = 13). In the majority of the samples, follicles at different stages lay in different clusters (P < 0.05, n = 13). CONCLUSIONS: This study shows that primordial and transitory follicles lie in different clusters in the human ovarian cortex. Spatio-temporal computer simulation suggests that interfollicular signals may hinder follicle loss and may therefore drive clustered follicle distribution. In clinical practice, the woman's age should be taken into account when assessing follicle density, as follicle distribution is increasingly clustered with advancing age.


Subject(s)
Aging/pathology , Ovary/cytology , Adult , Female , Humans , Young Adult
5.
Nat Methods ; 14(1): 18-22, 2016 12 29.
Article in English | MEDLINE | ID: mdl-28032624

ABSTRACT

Post-transcriptional RNA modifications were discovered several decades ago, but the reversible nature of RNA modifications has only recently been discovered. Owing to technological advances, knowledge of epitranscriptomic marks and their writers, readers and erasers has recently advanced tremendously. Here we focus on the roles of the dynamic methylation and demethylation of internal adenosines in mRNA in germ cells and pluripotent stem cells.


Subject(s)
Epigenesis, Genetic/genetics , Meiosis/genetics , Pluripotent Stem Cells/metabolism , RNA/chemistry , RNA/genetics , Animals , Humans , Pluripotent Stem Cells/cytology
6.
Nature ; 537(7621): 548-552, 2016 09 22.
Article in English | MEDLINE | ID: mdl-27626377

ABSTRACT

Maternal-to-zygotic transition (MZT) is essential for the formation of a new individual, but is still poorly understood despite recent progress in analysis of gene expression and DNA methylation in early embryogenesis. Dynamic histone modifications may have important roles in MZT, but direct measurements of chromatin states have been hindered by technical difficulties in profiling histone modifications from small quantities of cells. Recent improvements allow for 500 cell-equivalents of chromatin per reaction, but require 10,000 cells for initial steps or require a highly specialized microfluidics device that is not readily available. We developed a micro-scale chromatin immunoprecipitation and sequencing (µChIP-seq) method, which we used to profile genome-wide histone H3 lysine methylation (H3K4me3) and acetylation (H3K27ac) in mouse immature and metaphase II oocytes and in 2-cell and 8-cell embryos. Notably, we show that ~22% of the oocyte genome is associated with broad H3K4me3 domains that are anti-correlated with DNA methylation. The H3K4me3 signal becomes confined to transcriptional-start-site regions in 2-cell embryos, concomitant with the onset of major zygotic genome activation. Active removal of broad H3K4me3 domains by the lysine demethylases KDM5A and KDM5B is required for normal zygotic genome activation and is essential for early embryo development. Our results provide insight into the onset of the developmental program in mouse embryos and demonstrate a role for broad H3K4me3 domains in MZT.


Subject(s)
Chromatin/metabolism , DNA Methylation , Gene Expression Regulation, Developmental , Histones/metabolism , Lysine/metabolism , Oocytes/metabolism , Zygote/metabolism , Acetylation , Animals , Cell Line, Tumor , Chromatin/genetics , Chromatin Immunoprecipitation , Embryonic Development/genetics , Female , Genome/genetics , Histones/chemistry , Humans , Male , Methylation , Mice , Sequence Analysis, DNA , Transcription Initiation Site , Zygote/cytology
7.
Acta Obstet Gynecol Scand ; 94(9): 937-41, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26095872

ABSTRACT

INTRODUCTION: With increasing survival rates after treatment for cancer in prepubertal girls and women of reproductive age, an increasing focus on quality of life has emerged. Both irradiation and cytotoxic drugs can be detrimental to future fertility, consequently several treatment alternatives have been developed to spare or restore fertility in young females diagnosed with cancer. One of these options is cryopreservation of ovarian tissue before treatment and autotransplantation at a later time. MATERIAL AND METHODS: We present the Norwegian experience after 11 years of practice with ovarian tissue cryopreservation. A total of 164 patients have had ovarian tissue cryopreserved during the period 2004-2014. Fifteen patients died during the observation period. Six patients requested autotransplantation, which was performed in two women. RESULTS: Both patients conceived, one spontaneously and one after assisted reproduction due to a concomitant male factor. The pregnancies were uneventful and they each gave birth to a healthy child. CONCLUSIONS: Cryopreservation with later autotransplantation of ovarian tissue should be offered to a selected group of young women with cancer.


Subject(s)
Cryopreservation , Fertility Preservation/methods , Ovariectomy , Ovary/transplantation , Transplantation, Autologous , Adult , Female , Humans , Norway , Pregnancy , Pregnancy Outcome , Quality of Life , Retrospective Studies , Young Adult
8.
PLoS One ; 9(10): e108343, 2014.
Article in English | MEDLINE | ID: mdl-25310678

ABSTRACT

The early decline and loss of female fertility in humans and other species represents an evolutionary paradox. Despite being born with a vast stock of oocytes, females encounter an exhaustion of ovarian reserve and sterility half way through their natural lives. Female reproductive ageing has been proposed to proceed as an ongoing decline in ovarian reserve, determined by remaining ovarian follicle number. However, despite extensive modelling, the respective contributions of intra-, inter-, and extra-ovarian signalling have not been fully characterised. It remains unclear whether reproductive ageing progresses simply as a pre-determined function of remaining ovarian follicles, or as an age-dependent process in humans. Here, we have analysed ovarian response to hormonal stimulation in women who have undergone surgical removal of a single ovary, in order to investigate the relative contributions of intra-, inter, and extra-ovarian signalling on reproductive ageing. Our data show that in unilaterally oophorectomised women, ovarian response to follicle stimulating hormone (FSH) declines beyond levels predicted by a total ovarian follicle pool model of reproductive ageing. Maintenance of ovarian function later in reproductive life, despite the removal of half of the total ovarian reserve, suggests a role for an extra-ovarian age-dependent regulation of reproductive decline. This highlights the need for further work to identify signalling factors that communicate age-related signals between the soma and the germline.


Subject(s)
Follicle Stimulating Hormone/blood , Ovarian Reserve/physiology , Ovary/physiology , Reproduction/physiology , Adult , Age Factors , Female , Humans , Middle Aged , Ovarian Follicle/physiology , Ovariectomy , Young Adult
9.
PLoS One ; 9(8): e105113, 2014.
Article in English | MEDLINE | ID: mdl-25153837

ABSTRACT

ALKBH4, an AlkB homologue in the 2-oxoglutarate and Fe2+ dependent hydroxylase family, has previously been shown to regulate the level of monomethylated lysine-84 in actin and thereby indirectly influences the ability of non-muscular myosin II to bind actin filaments. ALKBH4 modulates fundamental processes including cytokinesis and cell motility, and its depletion is lethal during early preimplantation embryo stage. The aim of this study was to investigate the effect of ALKBH4 deficiency in a physiological context, using inducible Alkbh4 knockout mice. Here, we report that ALKBH4 is essential for the development of spermatocytes during the prophase of meiosis, and that ALKBH4 depletion leads to insufficient establishment of the synaptonemal complex. We also show that ALKBH4 is localized in nucleolar structures of Sertoli cells, spermatogonia and primary spermatocytes.


Subject(s)
Dioxygenases/physiology , Spermatogenesis/genetics , AlkB Homolog 4, Lysine Demethylase , Animals , Apoptosis/genetics , Dioxygenases/genetics , Dioxygenases/metabolism , Gene Knockout Techniques , Male , Mice , Mice, Knockout , Prophase/genetics , Sertoli Cells/metabolism , Testis/cytology
10.
Sci Rep ; 4: 3844, 2014 Jan 24.
Article in English | MEDLINE | ID: mdl-24457623

ABSTRACT

Induced pluripotent stem cells (iPSCs) hold much promise in the quest for personalised cell therapies. However, the persistence of founder cell mitochondrial DNA (mtDNA) mutations limits the potential of iPSCs in the development of treatments for mtDNA disease. This problem may be overcome by using oocytes containing healthy mtDNA, to induce somatic cell nuclear reprogramming. However, the extent to which somatic cell mtDNA persists following fusion with human oocytes is unknown. Here we show that human nuclear transfer (NT) embryos contain very low levels of somatic cell mtDNA. In light of a recent report that embryonic stem cells can be derived from human NT embryos, our results highlight the therapeutic potential of NT for mtDNA disease, and underscore the importance of using human oocytes to pursue this goal.


Subject(s)
Cellular Reprogramming , DNA, Mitochondrial/genetics , Embryonic Stem Cells/metabolism , Mitochondria/genetics , Neurodegenerative Diseases/therapy , Nuclear Transfer Techniques , Oocytes/metabolism , Amnion/cytology , Amnion/metabolism , Cell Differentiation , Cell Nucleus/genetics , Cells, Cultured , Embryonic Stem Cells/cytology , Female , Fibroblasts/cytology , Fibroblasts/metabolism , Humans , Mutation/genetics , Oocytes/cytology , Polymerase Chain Reaction , Skin/cytology , Skin/metabolism
11.
Hum Mol Genet ; 20(R2): R168-74, 2011 Oct 15.
Article in English | MEDLINE | ID: mdl-21852248

ABSTRACT

Very recently, two papers have presented intriguing data suggesting that prevention of transmission of human mitochondrial DNA (mtDNA) disease is possible. [Craven, L., Tuppen, H.A., Greggains, G.D., Harbottle, S.J., Murphy, J.L., Cree, L.M., Murdoch, A.P., Chinnery, P.F., Taylor, R.W., Lightowlers, R.N. et al. (2010) Pronuclear transfer in human embryos to prevent transmission of mitochondrial DNA disease. Nature, 465, 82-85. Tachibana, M., Sparman, M., Sritanaudomchai, H., Ma, H., Clepper, L., Woodward, J., Li, Y., Ramsey, C., Kolotushkina, O. and Mitalipov, S. (2009) Mitochondrial gene replacement in primate offspring and embryonic stem cells. Nature, 461, 367-372.] These recent advances raise hopes for families with mtDNA disease; however, the successful translational of these techniques to clinical practice will require further research to test for safety and to maximize efficacy. Furthermore, in the UK, amendment to the current legislation will be required. Here, we discuss the clinical and scientific background, studies we believe are important to establish safety and efficacy of the techniques and some of the potential concerns about the use of these approaches.


Subject(s)
DNA, Mitochondrial/genetics , Genetic Therapy/methods , Mitochondrial Diseases/prevention & control , Mitochondrial Diseases/therapy , Female , Humans , Male , Mitochondria/genetics , Mitochondrial Diseases/genetics
12.
Nature ; 465(7294): 82-5, 2010 May 06.
Article in English | MEDLINE | ID: mdl-20393463

ABSTRACT

Mutations in mitochondrial DNA (mtDNA) are a common cause of genetic disease. Pathogenic mutations in mtDNA are detected in approximately 1 in 250 live births and at least 1 in 10,000 adults in the UK are affected by mtDNA disease. Treatment options for patients with mtDNA disease are extremely limited and are predominantly supportive in nature. Mitochondrial DNA is transmitted maternally and it has been proposed that nuclear transfer techniques may be an approach for the prevention of transmission of human mtDNA disease. Here we show that transfer of pronuclei between abnormally fertilized human zygotes results in minimal carry-over of donor zygote mtDNA and is compatible with onward development to the blastocyst stage in vitro. By optimizing the procedure we found the average level of carry-over after transfer of two pronuclei is less than 2.0%, with many of the embryos containing no detectable donor mtDNA. We believe that pronuclear transfer between zygotes, as well as the recently described metaphase II spindle transfer, has the potential to prevent the transmission of mtDNA disease in humans.


Subject(s)
DNA, Mitochondrial/analysis , DNA, Mitochondrial/genetics , Mitochondrial Diseases/prevention & control , Nuclear Transfer Techniques , Blastomeres/chemistry , Embryo, Mammalian/chemistry , Embryo, Mammalian/cytology , Humans , Mitochondrial Diseases/genetics , Zygote/chemistry , Zygote/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...