Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Photochem Photobiol B ; 229: 112408, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35294918

ABSTRACT

Protoporphyrin IX (PpIX) is a molecule produced in the mitochondria following the administration of its approved precursor, aminolevulinic acid (ALA). Strong light absorber at different wavelengths in the visible range, PpIX is extensively used as a photosensitizer (PS) for Photodynamic Therapy (PDT). PpIX is also an ideal molecular probe for the quantification of the tissue oxygen partial pressure (pO2), as its delayed fluorescence (DF) is quenched by oxygen, creating a direct relationship between the DF lifetime and the pO2. A limitation of both techniques is the ignorance of the PpIX concentration in tissues when the pO2 is measured or during PDT. In this study, the prompt (PF) and delayed fluorescence of PpIX dissolved in DiMethylFormamide (DMF) were acquired, in absence of oxygen, at different PpIX concentrations. Measurements of the PpIX emission for different excitation energies and temperatures, as well as spectral considerations led to the conclusion that E-type (thermal) DF was the dominant DF mechanism at low PpIX excited states concentrations (density of absorbed energy Hε[PpIX] < 1 µJ. cm-3, H:excitation radiant exposure per pulse, ε: molar extinction coefficient at excitation wavelength) while P-type (Triplet Triplet Annihilation) DF took place at higher excited states concentrations (Hε[PpIX] > 10 µJ. cm-3). The gradual development of a strong, red-shifted structureless DF peak at 670 nm, invisible in the PF and absorption spectra, strongly points towards the first observation of PpIX excimer DF (EDF). It appears that, similarly to other aromatic molecules, PpIX excimers can be formed either by the encounter of two molecules in the first excited triplet state T1, or by the reaction of an excited singlet S1 with a triplet T1. Excimer DF could be beneficially used to determine the local concentration of PpIX, as the initial DF intensity ratio I0670/I0630 is linearly correlated with the local PpIX concentration, and thus rises up to the challenge of PpIX based pO2 measurement and PDT. This work could also pave the way for a fine comprehension of the production, diffusion and catabolization of PpIX in biological tissues.


Subject(s)
Photochemotherapy , Protoporphyrins , Aminolevulinic Acid , Photosensitizing Agents
2.
J Photochem Photobiol B ; 209: 111887, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32652463

ABSTRACT

Delayed fluorescence (DF) is a long-lived luminescence process used in a variety of applications ranging from oxygen sensing in biological tissues to organic Light Emitting Diodes. In common cases, DF results from the de-excitation of the first excited triplet state via the first excited singlet state of the chromophore, which produces a mono-exponential light signal whose amplitude and lifetime give an insight into the probed environment. However, non-linear de-excitation reactions such as triplet-triplet annihilation, which can cause decays to lose their mono-exponential nature, are often neglected. In this work, we derive a global framework to properly interpret decays resulting from a combination of linear and non-linear de-excitation processes. We show why the standard method of using multi-exponential models when decays are not mono-exponential is not always relevant, nor accurate. First, we explain why the triplet de-excitation and light production processes should be analyzed individually: we introduce novel concepts to precisely describe these two processes, namely the deactivation pathway - the reaction which mainly contributes to the triplet state de-excitation - and the measurement pathway - the reaction which is responsible for light production. We derive explicit fitting functions which allow the experimenter to estimate the reaction rates and excited state concentrations in the system. To validate our formalism, we analyze the in vitro Transient Triplet Absorption and DF of Protoporphyrin IX, a well-known biological aromatic molecule used in photodynamic therapy, cancer photodetection and oxygen sensing, which produces DF through various mechanisms depending on concentration and excitation intensity. We also identify the precise assumptions necessary to conclude that triplet-triplet annihilation DF should follow a mono-exponential decay with a lifetime of half the triplet state lifetime. Finally, we describe why the commonly used definitions of triplet / DF lifetime are ill-defined in the case where second-order reactions contribute to the deactivation process, and why the fitting of precise mixed-orders DF kinetics should be preferred in this case. This work could allow the correct interpretation of various long-lived luminescence processes and facilitate their understanding.


Subject(s)
Protoporphyrins/chemistry , Fluorescence , Kinetics , Models, Theoretical , Spectrometry, Fluorescence
3.
J Am Chem Soc ; 140(24): 7554-7560, 2018 06 20.
Article in English | MEDLINE | ID: mdl-29637771

ABSTRACT

The amino acid serine has long been known to form a protonated "magic-number" cluster containing eight monomer units that shows an unusually high abundance in mass spectra and has a remarkable homochiral preference. Despite many experimental and theoretical studies, there is no consensus on a Ser8H+ structure that is in agreement with all experimental observations. Here, we present the structure of Ser8H+ determined by a combination of infrared spectroscopy and ab initio molecular dynamics simulations. The three-dimensional structure that we determine is ∼25 kcal mol-1 more stable than the previous most stable published structure and explains both the homochiral preference and the experimentally observed facile replacement of two serine units.

SELECTION OF CITATIONS
SEARCH DETAIL
...