Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Protoc ; 19(2): 565-594, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38087082

ABSTRACT

To produce abundant cell culture samples to generate large, standardized image datasets of human induced pluripotent stem (hiPS) cells, we developed an automated workflow on a Hamilton STAR liquid handler system. This was developed specifically for culturing hiPS cell lines expressing fluorescently tagged proteins, which we have used to study the principles by which cells establish and maintain robust dynamic localization of cellular structures. This protocol includes all details for the maintenance, passage and seeding of cells, as well as Matrigel coating of 6-well plastic plates and 96-well optical-grade, glass plates. We also developed an automated image-based hiPS cell colony segmentation and feature extraction pipeline to streamline the process of predicting cell count and selecting wells with consistent morphology for high-resolution three-dimensional (3D) microscopy. The imaging samples produced with this protocol have been used to study the integrated intracellular organization and cell-to-cell variability of hiPS cells to train and develop deep learning-based label-free predictions from transmitted-light microscopy images and to develop deep learning-based generative models of single-cell organization. This protocol requires some experience with robotic equipment. However, we provide details and source code to facilitate implementation by biologists less experienced with robotics. The protocol is completed in less than 10 h with minimal human interaction. Overall, automation of our cell culture procedures increased our imaging samples' standardization, reproducibility, scalability and consistency. It also reduced the need for stringent culturist training and eliminated culturist-to-culturist variability, both of which were previous pain points of our original manual pipeline workflow.


Subject(s)
Induced Pluripotent Stem Cells , Humans , Microscopy , Reproducibility of Results , Cell Culture Techniques/methods , Automation
2.
Nature ; 613(7943): 345-354, 2023 01.
Article in English | MEDLINE | ID: mdl-36599983

ABSTRACT

Understanding how a subset of expressed genes dictates cellular phenotype is a considerable challenge owing to the large numbers of molecules involved, their combinatorics and the plethora of cellular behaviours that they determine1,2. Here we reduced this complexity by focusing on cellular organization-a key readout and driver of cell behaviour3,4-at the level of major cellular structures that represent distinct organelles and functional machines, and generated the WTC-11 hiPSC Single-Cell Image Dataset v1, which contains more than 200,000 live cells in 3D, spanning 25 key cellular structures. The scale and quality of this dataset permitted the creation of a generalizable analysis framework to convert raw image data of cells and their structures into dimensionally reduced, quantitative measurements that can be interpreted by humans, and to facilitate data exploration. This framework embraces the vast cell-to-cell variability that is observed within a normal population, facilitates the integration of cell-by-cell structural data and allows quantitative analyses of distinct, separable aspects of organization within and across different cell populations. We found that the integrated intracellular organization of interphase cells was robust to the wide range of variation in cell shape in the population; that the average locations of some structures became polarized in cells at the edges of colonies while maintaining the 'wiring' of their interactions with other structures; and that, by contrast, changes in the location of structures during early mitotic reorganization were accompanied by changes in their wiring.


Subject(s)
Induced Pluripotent Stem Cells , Intracellular Space , Humans , Induced Pluripotent Stem Cells/cytology , Single-Cell Analysis , Datasets as Topic , Interphase , Cell Shape , Mitosis , Cell Polarity , Cell Survival
3.
Science ; 360(6389): 660-663, 2018 05 11.
Article in English | MEDLINE | ID: mdl-29748285

ABSTRACT

Glioblastoma is an aggressive brain tumor that carries a poor prognosis. The tumor's molecular and cellular landscapes are complex, and their relationships to histologic features routinely used for diagnosis are unclear. We present the Ivy Glioblastoma Atlas, an anatomically based transcriptional atlas of human glioblastoma that aligns individual histologic features with genomic alterations and gene expression patterns, thus assigning molecular information to the most important morphologic hallmarks of the tumor. The atlas and its clinical and genomic database are freely accessible online data resources that will serve as a valuable platform for future investigations of glioblastoma pathogenesis, diagnosis, and treatment.


Subject(s)
Brain Neoplasms/genetics , Brain Neoplasms/pathology , Glioblastoma/genetics , Glioblastoma/pathology , Atlases as Topic , Databases, Genetic , Gene Expression Profiling , Humans , Prognosis
4.
Nature ; 508(7495): 199-206, 2014 Apr 10.
Article in English | MEDLINE | ID: mdl-24695229

ABSTRACT

The anatomical and functional architecture of the human brain is mainly determined by prenatal transcriptional processes. We describe an anatomically comprehensive atlas of the mid-gestational human brain, including de novo reference atlases, in situ hybridization, ultra-high-resolution magnetic resonance imaging (MRI) and microarray analysis on highly discrete laser-microdissected brain regions. In developing cerebral cortex, transcriptional differences are found between different proliferative and post-mitotic layers, wherein laminar signatures reflect cellular composition and developmental processes. Cytoarchitectural differences between human and mouse have molecular correlates, including species differences in gene expression in subplate, although surprisingly we find minimal differences between the inner and outer subventricular zones even though the outer zone is expanded in humans. Both germinal and post-mitotic cortical layers exhibit fronto-temporal gradients, with particular enrichment in the frontal lobe. Finally, many neurodevelopmental disorder and human-evolution-related genes show patterned expression, potentially underlying unique features of human cortical formation. These data provide a rich, freely-accessible resource for understanding human brain development.


Subject(s)
Brain/metabolism , Fetus/metabolism , Gene Expression Regulation, Developmental/genetics , Transcriptome , Anatomy, Artistic , Animals , Atlases as Topic , Brain/embryology , Conserved Sequence/genetics , Fetus/cytology , Fetus/embryology , Gene Regulatory Networks/genetics , Humans , Mice , Neocortex/embryology , Neocortex/metabolism , Species Specificity
5.
Nature ; 489(7416): 391-399, 2012 Sep 20.
Article in English | MEDLINE | ID: mdl-22996553

ABSTRACT

Neuroanatomically precise, genome-wide maps of transcript distributions are critical resources to complement genomic sequence data and to correlate functional and genetic brain architecture. Here we describe the generation and analysis of a transcriptional atlas of the adult human brain, comprising extensive histological analysis and comprehensive microarray profiling of ∼900 neuroanatomically precise subdivisions in two individuals. Transcriptional regulation varies enormously by anatomical location, with different regions and their constituent cell types displaying robust molecular signatures that are highly conserved between individuals. Analysis of differential gene expression and gene co-expression relationships demonstrates that brain-wide variation strongly reflects the distributions of major cell classes such as neurons, oligodendrocytes, astrocytes and microglia. Local neighbourhood relationships between fine anatomical subdivisions are associated with discrete neuronal subtypes and genes involved with synaptic transmission. The neocortex displays a relatively homogeneous transcriptional pattern, but with distinct features associated selectively with primary sensorimotor cortices and with enriched frontal lobe expression. Notably, the spatial topography of the neocortex is strongly reflected in its molecular topography-the closer two cortical regions, the more similar their transcriptomes. This freely accessible online data resource forms a high-resolution transcriptional baseline for neurogenetic studies of normal and abnormal human brain function.


Subject(s)
Anatomy, Artistic , Atlases as Topic , Brain/anatomy & histology , Brain/metabolism , Gene Expression Profiling , Transcriptome/genetics , Adult , Animals , Brain/cytology , Calbindins , Databases, Genetic , Dopamine/metabolism , Health , Hippocampus/cytology , Hippocampus/metabolism , Humans , In Situ Hybridization , Internet , Macaca mulatta/anatomy & histology , Macaca mulatta/genetics , Male , Mice , Neocortex/anatomy & histology , Neocortex/cytology , Neocortex/metabolism , Oligonucleotide Array Sequence Analysis , Post-Synaptic Density/genetics , RNA, Messenger/analysis , RNA, Messenger/genetics , S100 Calcium Binding Protein G/genetics , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...