Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 12(35): 39926-39934, 2020 Sep 02.
Article in English | MEDLINE | ID: mdl-32805907

ABSTRACT

Development of modern spintronic devices requires materials exhibiting specific magnetic effects. In this paper, we investigate a magnetization reversal mechanism in a [Co/Pdx]7/CoO/[Co/Pdy]7 thin-film composite, where an antiferromagnet is sandwiched between a hard and a soft ferromagnets with different coercivities. The antiferromagnet/ferromagnet interfaces give rise to the exchange bias effect. The application of soft and hard ferromagnetic films causes exchange-spring-like behavior, while the choice of the Co/Pd multilayers provides large out-of-plane magnetic anisotropy. We observed that the magnitude and the sign of the exchange bias anisotropy field are related to the arrangement of the magnetic moments in the antiferromagnetic layer. This ordering is induced by the spin orientation present in neighboring ferromagnetic films, which is, in turn, dependent on the orientation and strength of the external magnetic field.

2.
Nanoscale ; 11(18): 8930-8939, 2019 May 09.
Article in English | MEDLINE | ID: mdl-31017139

ABSTRACT

A highly versatile and scalable path to obtain buried magnetic nanostructures within alloy thin films, while maintaining a flat topography, is described. A magnetic pattern of nanoscale periodicity is generated over ∼cm2 areas by employing a B2 → A2 structural transition in the prototype Fe60Al40 thin alloy films. The phase transition was induced in the confined regions via ion-irradiation through self-assembled nanosphere masks. In this way, large area patterns of a hexagonal symmetry of ferromagnetic nanostructures embedded within a paramagnetic Fe60Al40 thin film are realized. The depth and lateral distribution of the induced magnetization was investigated by magnetometry and microscopy methods. Magnetic contrast imaging as well as simulations shows that the obtained magnetic structures are well defined, with the magnetic behavior tunable via the mask geometry.

SELECTION OF CITATIONS
SEARCH DETAIL
...