Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 15(20): 24271-24283, 2023 May 24.
Article in English | MEDLINE | ID: mdl-37167022

ABSTRACT

Nanostructured solid-state batteries (SSBs) are poised to meet the demands of next-generation energy storage technologies by realizing performance competitive to their liquid-based counterparts while simultaneously offering improved safety and expanded form factors. Atomic layer deposition (ALD) is among the tools essential to fabricate nanostructured devices with challenging aspect ratios. Here, we report the fabrication and electrochemical testing of the first nanoscale sodium all-solid-state battery (SSB) using ALD to deposit both the V2O5 cathode and NaPON solid electrolyte followed by evaporation of a thin-film Na metal anode. NaPON exhibits remarkable stability against evaporated Na metal, showing no electrolyte breakdown or significant interphase formation in the voltage range of 0.05-6.0 V vs Na/Na+. Electrochemical analysis of the SSB suggests intermixing of the NaPON/V2O5 layers during fabrication, which we investigate in three ways: in situ spectroscopic ellipsometry, time-resolved X-ray photoelectron spectroscopy (XPS) depth profiling, and cross-sectional cryo-scanning transmission electron microscopy (cryo-STEM) coupled with electron energy loss spectroscopy (EELS). We characterize the interfacial reaction during the ALD NaPON deposition on V2O5 to be twofold: (1) reduction of V2O5 to VO2 and (2) Na+ insertion into VO2 to form NaxVO2. Despite the intermixing of NaPON-V2O5, we demonstrate that NaPON-coated V2O5 electrodes display enhanced electrochemical cycling stability in liquid-electrolyte coin cells through the formation of a stable electrolyte interphase. In all-SSBs, the Na metal evaporation process is found to intensify the intermixing reaction, resulting in the irreversible formation of mixed interphases between discrete battery layers. Despite this graded composition, the SSB can operate for over 100 charge-discharge cycles at room temperature and represents the first demonstration of a functional thin-film solid-state sodium-ion battery.

2.
Dalton Trans ; 51(5): 2068-2082, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-35048935

ABSTRACT

A key trailblazer in the development of thin-film solid-state electrolytes has been lithium phosphorous oxynitride (LiPON), the success of which has led to recent progress in thin-film ion conductors. Here we compare the structural, electrochemical, and processing parameters between previously published LiPON and NaPON ALD processes with a novel ALD process for the K analogue potassium phosphorous oxynitride (KPON). In each ALD process, alkali tert-butoxides and diethylphosphoramidate are used as precursors. To understand the ALD surface reactions, this work proposes a reaction mechanism determined by in-operando mass spectrometry for the LiPON process as key to understanding the characteristics of the APON (A = Li, Na, K) family. As expected, NaPON and LiPON share similar reaction mechanisms as their structures are strikingly similar. KPON, however, exhibits similar ALD process parameters but the resulting film composition is quite different, showing little nitrogen incorporation and more closely resembling a phosphate glass. Due to the profound difference in structure, KPON likely undergoes an entirely different reaction mechanism. This paper presents a comprehensive summary of ALD ion conducting APON films as well as a perspective that highlights the versatility of ALD chemistries as a tool for the development of novel thin film ion-conductors.

3.
ACS Appl Mater Interfaces ; 12(19): 21641-21650, 2020 May 13.
Article in English | MEDLINE | ID: mdl-32315520

ABSTRACT

The development of novel materials that are compatible with nanostructured architectures is required to meet the demands of next-generation energy-storage technologies. Atomic layer deposition (ALD) allows for the precise synthesis of new materials that can conformally coat complex 3D structures. In this work, we demonstrate a thermal ALD process for sodium phosphorus oxynitride (NaPON), a thin-film solid-state electrolyte (SSE), for sodium-ion batteries (SIBs). NaPON is analogous to the commonly used lithium phosphorus oxynitride SSE in lithium-ion batteries. The ALD process produces a conformal film with a stoichiometry of Na4PO3N, corresponding to a sodium polyphosphazene structure. The electrochemical properties of NaPON are characterized to evaluate its potential in SIBs. The NaPON film exhibited a high ionic conductivity of 1.0 × 10-7 S/cm at 25 °C and up to 2.5 × 10-6 S/cm at 80 °C, with an activation energy of 0.53 eV. In addition, the ionic conductivity is comparable and even higher than the ionic conductivities of ALD-fabricated Li+ conductors. This promising result makes NaPON a viable SSE or passivation layer in solid-state SIBs.

4.
ACS Nano ; 12(5): 4286-4294, 2018 05 22.
Article in English | MEDLINE | ID: mdl-29688704

ABSTRACT

Three-dimensional thin-film solid-state batteries (3D TSSB) were proposed by Long et al. in 2004 as a structure-based approach to simultaneously increase energy and power densities. Here, we report experimental realization of fully conformal 3D TSSBs, demonstrating the simultaneous power-and-energy benefits of 3D structuring. All active battery components-electrodes, solid electrolyte, and current collectors-were deposited by atomic layer deposition (ALD) onto standard CMOS processable silicon wafers microfabricated to form arrays of deep pores with aspect ratios up to approximately 10. The cells utilize an electrochemically prelithiated LiV2O5 cathode, a very thin (40-100 nm) Li2PO2N solid electrolyte, and a SnN x anode. The fabrication process occurs entirely at or below 250 °C, promising compatibility with a variety of substrates as well as integrated circuits. The multilayer battery structure enabled all-ALD solid-state cells to deliver 37 µAh/cm2·µm (normalized to cathode thickness) with only 0.02% per-cycle capacity loss. Conformal fabrication of full cells over 3D substrates increased the areal discharge capacity by an order of magnitude while simulteneously improving power performance, a trend consistent with a finite element model. This work shows that the exceptional conformality of ALD, combined with conventional semiconductor fabrication methods, provides an avenue for the successful realization of long-sought 3D TSSBs which provide power performance scaling in regimes inaccessible to planar form factor cells.

6.
Nat Commun ; 6: 6150, 2015 Feb 02.
Article in English | MEDLINE | ID: mdl-25639190

ABSTRACT

Systems allowing label-free molecular detection are expected to have enormous impact on biochemical sciences. Research focuses on materials and technologies based on exploiting localized surface plasmon resonances in metallic nanostructures. The reason for this focused attention is their suitability for single-molecule sensing, arising from intrinsically nanoscopic sensing volume and the high sensitivity to the local environment. Here we propose an alternative route, which enables radically improved sensitivity compared with recently reported plasmon-based sensors. Such high sensitivity is achieved by exploiting the control of the phase of light in magnetoplasmonic nanoantennas. We demonstrate a manifold improvement of refractometric sensing figure-of-merit. Most remarkably, we show a raw surface sensitivity (that is, without applying fitting procedures) of two orders of magnitude higher than the current values reported for nanoplasmonic sensors. Such sensitivity corresponds to a mass of ~ 0.8 ag per nanoantenna of polyamide-6.6 (n=1.51), which is representative for a large variety of polymers, peptides and proteins.

7.
ACS Nano ; 9(1): 464-73, 2015 Jan 27.
Article in English | MEDLINE | ID: mdl-25517036

ABSTRACT

Pushing lithium-ion battery (LIB) technology forward to its fundamental scaling limits requires the ability to create designer heterostructured materials and architectures. Atomic layer deposition (ALD) has recently been applied to advanced nanostructured energy storage devices due to the wide range of available materials, angstrom thickness control, and extreme conformality over high aspect ratio nanostructures. A class of materials referred to as conversion electrodes has recently been proposed as high capacity electrodes. RuO2 is considered an ideal conversion material due to its high combined electronic and ionic conductivity and high gravimetric capacity, and as such is an excellent material to explore the behavior of conversion electrodes at nanoscale thicknesses. We report here a fully characterized atomic layer deposition process for RuO2, electrochemical cycling data for ALD RuO2, and the application of the RuO2 to a composite carbon nanotube electrode scaffold with nucleation-controlled RuO2 growth. A growth rate of 0.4 Å/cycle is found between ∼ 210-240 °C. In a planar configuration, the resulting RuO2 films show high first cycle electrochemical capacities of ∼ 1400 mAh/g, but the capacity rapidly degrades with charge/discharge cycling. We also fabricated core/shell MWCNT/RuO2 heterostructured 3D electrodes, which show a 50× increase in the areal capacity over their planar counterparts, with an areal lithium capacity of 1.6 mAh/cm(2).

8.
Nat Nanotechnol ; 9(12): 1031-9, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25383515

ABSTRACT

A single nanopore structure that embeds all components of an electrochemical storage device could bring about the ultimate miniaturization in energy storage. Self-alignment of electrodes within each nanopore may enable closer and more controlled spacing between electrodes than in state-of-art batteries. Such an 'all-in-one' nanopore battery array would also present an alternative to interdigitated electrode structures that employ complex three-dimensional geometries with greater spatial heterogeneity. Here, we report a battery composed of an array of nanobatteries connected in parallel, each composed of an anode, a cathode and a liquid electrolyte confined within the nanopores of anodic aluminium oxide, as an all-in-one nanosize device. Each nanoelectrode includes an outer Ru nanotube current collector and an inner nanotube of V2O5 storage material, forming a symmetric full nanopore storage cell with anode and cathode separated by an electrolyte region. The V2O5 is prelithiated at one end to serve as the anode, with pristine V2O5 at the other end serving as the cathode, forming a battery that is asymmetrically cycled between 0.2 V and 1.8 V. The capacity retention of this full cell (relative to 1 C values) is 95% at 5 C and 46% at 150 C, with a 1,000-cycle life. From a fundamental point of view, our all-in-one nanopore battery array unveils an electrochemical regime in which ion insertion and surface charge mechanisms for energy storage become indistinguishable, and offers a testbed for studying ion transport limits in dense nanostructured electrode arrays.

9.
ACS Nano ; 7(7): 6354-60, 2013 Jul 23.
Article in English | MEDLINE | ID: mdl-23782274

ABSTRACT

Conversion-type electrodes represent a broad class of materials with a new Li(+) reactivity concept. Of these materials, RuO2 can be considered a model material due to its metallic-like conductivity and its high theoretical capacity of 806 mAh/g. In this paper, we use in situ transmission electron microscopy to study the reaction between single-crystal RuO2 nanowires and Li(+). We show that a large volume expansion of 95% occurs after lithiation, 26% of which is irreversible after delithiation. Significant surface roughening and lithium embrittlement are also present. Furthermore, we show that the initial reaction from crystalline RuO2 to the fully lithiated mixed phase of Ru/Li2O is not fully reversible, passing through an intermediate phase of LixRuO2. In subsequent cycles, the phase transitions are between amorphous RuO2 in the delithiated state and a nanostructured network of Ru/Li2O in the fully lithiated phase.


Subject(s)
Electrochemistry/instrumentation , Electrochemistry/methods , Electrodes , Lithium/chemistry , Nanostructures/chemistry , Nanostructures/ultrastructure , Ruthenium Compounds/chemistry , Equipment Design , Equipment Failure Analysis , Materials Testing , Microscopy, Electron, Transmission/methods , Particle Size , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...