Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Green Chem ; 25(8): 3166-3174, 2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37113763

ABSTRACT

The formation of new carbon-nitrogen bonds is indisputably one of the most important tasks in synthetic organic chemistry. Here, nitroso compounds offer a highly interesting reactivity that complements traditional amination strategies, allowing for the introduction of nitrogen functionalities via ene-type reactions or Diels-Alder cycloadditions. In this study, we highlight the potential of horseradish peroxidase as biological mediator for the generation of reactive nitroso species under environmentally benign conditions. Exploiting a non-natural peroxidase reactivity, in combination with glucose oxidase as oxygen-activating biocatalyst, aerobic activation of a broad range of N-hydroxycarbamates and hydroxamic acids is achieved. Thus both intra- and intermolecular nitroso-ene as well as nitroso-Diels-Alder reactions are performed with high efficiency. Relying on a commercial and robust enzyme system, the aqueous catalyst solution can be recycled over numerous reaction cycles without significant loss of activity. Overall, this green and scalable C-N bond-forming strategy enables the production of allylic amides and various N-heterocyclic building blocks utilizing only air and glucose as sacrificial reagents.

2.
ChemCatChem ; 14(20): e202200886, 2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36632425

ABSTRACT

The chemo- and stereoselective semi-hydrogenation of alkynes to alkenes is a fundamental transformation in synthetic chemistry, for which the use of precious 4d or 5d metal catalysts is well-established. In mankind's unwavering quest for sustainability, research focus has considerably veered towards the 3d metals. Given their high abundancy and availability as well as lower toxicity and noxiousness, they are undoubtedly attractive from both an economic and an environmental perspective. Herein, we wish to present noteworthy and groundbreaking examples for the use of 3d metal catalysts for diastereoselective alkyne semi-hydrogenation as we embark on a journey through the first-row transition metals.

3.
ChemSusChem ; 12(16): 3864-3870, 2019 Aug 22.
Article in English | MEDLINE | ID: mdl-31265757

ABSTRACT

The stereoselective hydrogenation of alkynes constitutes one of the key approaches for the construction of stereodefined alkenes. The majority of conventional methods utilize noble and toxic metal catalysts. This study concerns a simple catalyst comprised of the commercial chemicals iron(II) acetylacetonate and diisobutylaluminum hydride, which enables the Z-selective semihydrogenation of alkynes under near ambient conditions (1-3 bar H2 , 30 °C, 5 mol % [Fe]). Neither an elaborate catalyst preparation nor addition of ligands is required. Mechanistic studies (kinetic poisoning, X-ray absorption spectroscopy, TEM) strongly indicate the operation of small iron clusters and particle catalysts.

SELECTION OF CITATIONS
SEARCH DETAIL
...