Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Phys Chem Chem Phys ; 20(30): 19995-20003, 2018 Aug 01.
Article in English | MEDLINE | ID: mdl-30022202

ABSTRACT

Thin films of Y2Zr2O7 were grown via pulsed laser deposition (PLD) on substrates of MgO(110), Al2O3(0001) and Al2O3(11[combining macron]02). Electrical properties were investigated via electrical impedance spectroscopy. Unexpectedly, the ionic conductivity is not affected by the microstructure; only minor differences in conductivities and activation energies were measured between epitaxial thin films (on MgO) and textured thin films (on Al2O3, both orientations). This indicates the grain boundaries of such a material to only marginally block the oxygen vacancy transport. Starting from these results, epitaxial multilayers of Y2Zr2O7 and 8 mol% yttria-stabilized zirconia with same overall thickness (between 60 and 70 nm) and different number of interfaces (from 1 up to 9) have been deposited on MgO(110) and the role of the residual compressive strain on the electrical properties has been investigated by means of XRD analysis and impedance spectroscopy. The results, showing no effect of the strain field on the ionic conductivity, indicate the negligible effect of the compressive strain on the ionic transport properties of the material.

2.
ACS Appl Mater Interfaces ; 10(26): 22786-22792, 2018 Jul 05.
Article in English | MEDLINE | ID: mdl-29927575

ABSTRACT

Transition metal oxides exhibit a high potential for application in the field of electronic devices, energy storage, and energy conversion. The ability of building these types of materials by atomic layer-by-layer techniques provides a possibility to design novel systems with favored functionalities. In this study, by means of the atomic layer-by-layer oxide molecular beam epitaxy technique, we designed oxide heterostructures consisting of tetragonal K2NiF4-type insulating La2CuO4 (LCO) and perovskite-type conductive metallic LaNiO3 (LNO) layers with different thicknesses to assess the heterostructure-thermoelectric property-relationship at high temperatures. We observed that the transport properties depend on the constituent layer thickness, interface intermixing, and oxygen-exchange dynamics in the LCO layers, which occurs at high temperatures. As the thickness of the individual layers was reduced, the electrical conductivity decreased and the sign of the Seebeck coefficient changed, revealing the contribution of the individual layers where possible interfacial contributions cannot be ruled out. High-resolution scanning transmission electron microscopy investigations showed that a substitutional solid solution of La2(CuNi)O4 was formed when the thickness of the constituent layers was decreased.

3.
Nat Mater ; 17(5): 445-449, 2018 05.
Article in English | MEDLINE | ID: mdl-29555997

ABSTRACT

In the same way as electron transport is crucial for information technology, ion transport is a key phenomenon in the context of energy research. To be able to tune ion conduction by light would open up opportunities for a wide realm of new applications, but it has been challenging to provide clear evidence for such an effect. Here we show through various techniques, such as transference-number measurements, permeation studies, stoichiometric variations, Hall effect experiments and the use of blocking electrodes, that light excitation enhances by several orders of magnitude the ionic conductivity of methylammonium lead iodide, the archetypal metal halide photovoltaic material. We provide a rationale for this unexpected phenomenon and show that it straightforwardly leads to a hitherto unconsidered photodecomposition path of the perovskite.

4.
ACS Appl Mater Interfaces ; 9(32): 27257-27265, 2017 Aug 16.
Article in English | MEDLINE | ID: mdl-28741349

ABSTRACT

The systematic study of the ionic transport properties of epitaxial Y2Zr2O7 films with defective fluorite structure reveals an enhanced oxygen vacancy conductivity at the interface between the films and the MgO(110) substrate, which is characterized by a high density of misfit dislocations. This beneficial effect is discussed in terms of space-charge and mobility effects.

5.
Angew Chem Int Ed Engl ; 56(27): 7755-7759, 2017 06 26.
Article in English | MEDLINE | ID: mdl-28558144

ABSTRACT

By applying a multitude of experimental techniques including 1 H, 14 N, 207 Pb NMR and 127 I NMR/NQR, tracer diffusion, reaction cell and doping experiments, as well as stoichiometric variation, conductivity, and polarization experiments, iodine ions are unambiguously shown to be the mobile species in CH3 NH3 PbI3 , with iodine vacancies shown to represent the mechanistic centers under equilibrium conditions. Pb2+ and CH3 NH3+ ions do not significantly contribute to the long range transport (upper limits for their contributions are given), whereby the latter exhibit substantial local motion. The decisive electronic contribution to the mixed conductivity in the experimental window stems from electron holes. As holes can be associated with iodine orbitals, local variations of the iodine stoichiometry may be fast and enable light effects on ion transport.

6.
Sci Rep ; 7(1): 453, 2017 03 28.
Article in English | MEDLINE | ID: mdl-28352070

ABSTRACT

Among the range of complex interactions, especially at the interfaces of epitaxial oxide systems, contributing to the occurrence of intriguing effects, a predominant role is played by the local structural parameters. In this study, oxide molecular beam epitaxy grown lanthanum cuprate-based bilayers (consisting of a metallic (M) and an insulating phase (I)), in which high-temperature superconductivity arises as a consequence of interface effects, are considered. With the aim of assessing the role of the dopant size on local crystal structure and chemistry, and on the interface functionalities, different dopants (Ca2+, Sr2+ and, Ba2+) are employed in the M-phase, and the M-I bilayers are investigated by complementary techniques, including spherical-aberration-corrected scanning transmission electron microscopy. A series of exciting outcomes are found: (i) the average out-of-plane lattice parameter of the bilayers is linearly dependent on the dopant ion size, (ii) each dopant redistributes at the interface with a characteristic diffusion length, and (iii) the superconductivity properties are highly dependent on the dopant of choice. Hence, this study highlights the profound impact of the dopant size and related interface chemistry on the functionalities of superconducting oxide systems.

7.
ACS Appl Mater Interfaces ; 8(40): 27368-27375, 2016 Oct 12.
Article in English | MEDLINE | ID: mdl-27648928

ABSTRACT

The exploration of interface effects in complex oxide heterostructures has led to the discovery of novel intriguing phenomena in recent years and has opened the path toward the precise tuning of material properties at the nanoscale. One recent example is space-charge superconductivity. Among the complex range of effects which may arise from phase interaction, a crucial role is played by cationic intermixing, which defines the final chemical composition of the interface. In this work, we performed a systematic study on the local cationic redistribution of two-dimensionally doped lanthanum cuprate films grown by oxide molecular beam epitaxy, in which single LaO layers in the epitaxial crystal structure were substituted by layers of differently sized and charged dopants (Ca, Sr, Ba, and Dy). In such a model system, in which the dopant undergoes an asymmetric redistribution across the interface, the evolution of the cationic concentration profile can be effectively tracked by means of atomically resolved imaging and spectroscopic methods. This allowed for the investigation of the impact of the dopant chemistry (ionic size and charge) and of the growth conditions (temperature) on the final superconducting and structural properties. A qualitative model for interface cationic intermixing, based on thermodynamic considerations, is proposed. This work highlights the key role which cationic redistribution may have in the definition of the final interface properties and represents a further step forward the realization of heterostructures with improved quality.

8.
ACS Appl Mater Interfaces ; 8(10): 6763-9, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26909681

ABSTRACT

Using spherical aberration corrected high-resolution and analytical scanning transmission electron microscopy, we have quantitatively studied the lattice distortion and the redistribution of charges in two-dimensionally strontium (Sr)-doped La2CuO4 superlattices, in which single LaO planes are periodically replaced by SrO planes. As shown previously, such structures show Tc up to 35 K as a consequence of local charge accumulation on both sides of the nominal SrO planes position. This is caused by two distinct mechanisms of doping: heterogeneous doping at the downward side of the interface (space-charge effect) and "classical" homogeneous doping at the upward side. The comparative chemical and atomic-structural analyses reveal an interrelation between local CuO6 octahedron distortions, hole spatial distribution, and chemical composition. In particular we observe an anomalous expansion of the apical oxygen-oxygen distance in the heterogeneously doped (space-charge) region, and a substantial shrinkage of the apical oxygen-oxygen distance in the homogeneously doped region. Such findings are interpreted in terms of different Jahn-Teller effects occurring at the two interface sides (downward and upward).

9.
Angew Chem Int Ed Engl ; 54(27): 7905-10, 2015 Jun 26.
Article in English | MEDLINE | ID: mdl-25980541

ABSTRACT

The success of perovskite solar cells has sparked enormous excitement in the photovoltaic community not only because of unexpectedly high efficiencies but also because of the future potential ascribed to such crystalline absorber materials. Far from being exhaustively studied in terms of solid-state properties, these materials surprised by anomalies such as a huge apparent low-frequency dielectric constant and pronounced hysteretic current-voltage behavior. Here we show that methylammonium (but also formamidinium) iodoplumbates are mixed conductors with a large fraction of ion conduction because of iodine ions. In particular, we measure and model the stoichiometric polarization caused by the mixed conduction and demonstrate that the above anomalies can be explained by the build-up of stoichiometric gradients as a consequence of ion blocking interfaces. These findings provide insight into electrical charge transport in the hybrid organic-inorganic lead halide solar cells as well as into new possibilities of improving the photovoltaic performance by controlling the ionic disorder.

10.
Phys Chem Chem Phys ; 16(21): 10214-31, 2014 Jun 07.
Article in English | MEDLINE | ID: mdl-24724153

ABSTRACT

Using numerical solutions of the Poisson-equation, one dimensional space charge layer (SCL) concentration profiles in CeO2 are calculated. The SCL conductivity effects of nanocrystalline CeO2 are analyzed as a function of doping content (donor doped, pure and acceptor doped ceria) and SCL potential including not only the standard Gouy-Chapman and Mott-Schottky cases, but also the more complex mixed situations. The results of the numerical approach are compared with the usual analytical approximations. While for the ideal Gouy-Chapman and Mott-Schottky cases for moderate and high potentials the agreement between analytical and numerical solutions is found to be satisfactory, mixed cases and low potential situations cannot be reliably treated by using the standard analytical approaches. Finally, inspired from the numerical solutions, improved analytical equations are proposed which are found to generally yield much more precise results and are accurate even for the mixed situations and low potentials.

11.
Phys Chem Chem Phys ; 16(21): 10175-86, 2014 Jun 07.
Article in English | MEDLINE | ID: mdl-24647325

ABSTRACT

The numerical approach presented in Part I is used to investigate in detail some important characteristics of space charge layer (SCL) concentration profiles (steepness, extent, charge contributions and total charge), which determine the resulting SCL effects on the ionic and electronic transport. Here, as a case study the conductivity changes in nanocrystalline ceria are discussed over a broad range of dopant concentration (acceptor and donor-doped) as well as space charge potential values. In addition, the effects of a mobile dopant on the SCL charge carrier profiles are addressed. Finally, using the numerical approach the possibilities of adjusting (under realistic conditions) the SCL effects to improve the conduction properties of nanocrystalline CeO2 are discussed.

12.
Angew Chem Int Ed Engl ; 53(12): 3151-7, 2014 Mar 17.
Article in English | MEDLINE | ID: mdl-24554633

ABSTRACT

Hybrid organic-inorganic lead halide perovskite APbX3 pigments, such as methylammonium lead iodide, have recently emerged as excellent light harvesters in solid-state mesoscopic solar cells. An important target for the further improvement of the performance of perovskite-based photovoltaics is to extend their optical-absorption onset further into the red to enhance solar-light harvesting. Herein, we show that this goal can be reached by using a mixture of formamidinium (HN=CHNH3 (+), FA) and methylammonium (CH3 NH3 (+), MA) cations in the A position of the APbI3 perovskite structure. This combination leads to an enhanced short-circuit current and thus superior devices to those based on only CH3 NH3 (+). This concept has not been applied previously in perovskite-based solar cells. It shows great potential as a versatile tool to tune the structural, electrical, and optoelectronic properties of the light-harvesting materials.

13.
J Am Chem Soc ; 134(24): 10132-7, 2012 Jun 20.
Article in English | MEDLINE | ID: mdl-22548653

ABSTRACT

The isotypic layered oxonitridosilicates Li(14)Ln(5)[Si(11)N(19)O(5)]O(2)F(2) (Ln = Ce, Nd) have been synthesized using Li as fluxing agent and crystallize in the orthorhombic space group Pmmn (Z = 2, Li(14)Ce(5)[Si(11)N(19)O(5)]O(2)F(2): a = 17.178(3), b = 7.6500(15), c = 10.116(2) Å, R1 = 0.0409, wR2 = 0.0896; Li(14)Nd(5)[Si(11)N(19)O(5)]O(2)F(2): a = 17.126(2), b = 7.6155(15), c = 10.123(2) Å, R1 = 0.0419, wR2 = 0.0929). The silicate layers consist of dreier and sechser rings interconnected via common corners, yielding an unprecedented silicate substructure. A topostructural analysis indicates possible 1D ion migration pathways between five crystallographic independent Li positions. The specific Li-ionic conductivity and its temperature dependence were determined by impedance spectroscopy as well as DC polarization/depolarization measurements. The ionic conductivity is on the order of 5 × 10(-5) S/cm at 300 °C, while the activation energy is 0.69 eV. Further adjustments of the defect chemistry (e.g., through doping) can make these compounds interesting candidates for novel oxonitridosilicate based ion conductors.

14.
Phys Chem Chem Phys ; 13(23): 10940-5, 2011 Jun 21.
Article in English | MEDLINE | ID: mdl-21566839

ABSTRACT

We report on the investigation of 10 mol% gadolinium-doped cerium oxide thin films of various microstructures prepared by pulsed laser deposition. Depending on substrate, growth conditions and hence microstructure, the electric conductivity values vary considerably by several orders of magnitude. Remarkably, in the sample with the highest grain boundary density, we even have evidence of substantial electronic conductance under oxidizing conditions despite the large acceptor level. This possibly surprising result can be explained by an increased space charge potential at the grain boundaries in combination with the small grain size of 10 nm that leads to an enrichment of excess electrons while the ion conduction is simultaneously blocked by vacancy-depleted regions.

15.
Phys Chem Chem Phys ; 13(3): 937-40, 2011 Jan 21.
Article in English | MEDLINE | ID: mdl-21107470

ABSTRACT

Conductivity measurements were performed on microcrystalline and nanocrystalline ceria (undoped and doped) in dry as well as wet atmosphere. Below 200-250 °C, the nanocrystalline samples exhibit an enhanced total conductivity under wet conditions, which increases with decreasing temperature. In addition, thermo-gravimetric analysis revealed a strong water uptake below 200 °C. DC-polarization measurements confirm the ionic character of conductivity in the nanocrystalline samples at low temperatures. The role of both grain boundaries and residual porosity on the enhanced conductivity below 200 °C is discussed.

17.
Phys Chem Chem Phys ; 12(42): 14351-61, 2010 Nov 14.
Article in English | MEDLINE | ID: mdl-20890498

ABSTRACT

Thin films of CeO(2) (both nominally pure and 10 mol% gadolinium-doped) grown via pulsed-laser deposition were studied. The electrical conductivity of the samples was measured as a function of thickness, temperature and oxygen partial pressure (pO(2)) using impedance spectroscopy. As expected, undoped CeO(2) exhibits electronic conductivity (with activation energy between 1.4 and 1.6 eV) whereas the highly doped samples are oxygen vacancy conductors (activation energy around 0.7 eV for epitaxial films). In order to investigate the influence of the nature of the substrate the thin films were grown on two different substrates, Al(2)O(3) (0001) and SiO(2) (0001), and compared. While the films grown on SiO(2) exhibit a microstructure characterized by columnar grains, the films grown on Al(2)O(3) are epitaxial. Notably, for films on both substrates the conductivity and activation energy vary with film thickness and exhibit remarkable differences when the films on different substrates are compared. In the case of the polycrystalline films (SiO(2) substrate), the space charge layer effects of the grain boundaries dominate over the substrate-film interface effect. In the case of the epitaxial films (Al(2)O(3) substrate), a small interface effect, probably due to a space charge layer or structural strain, is observed.

18.
J Electron Microsc (Tokyo) ; 51(6): 347-52, 2002.
Article in English | MEDLINE | ID: mdl-12630777

ABSTRACT

Modifications to a scanning electron microscope (SEM) and a commercially available heating stage permits in situ imaging at temperatures as high as 1450 degrees C. Here we report on the technical modifications necessary to allow such high-temperature in situ imaging. In addition, in order to underline the potential of this technique in the field of materials science, three heating-stage experiments are presented, which reveal microstructural changes occurring at high temperature. The respective in situ experiments are: (i) surface crystallization of a cordierite glass at 1050 degrees C; (ii) thermal recovery of asbestos (chrysotile) fibers at 1250 degrees C; and (iii) residual pore-structure evolution of tricalcium phosphate during sintering at 1450 degrees C.

SELECTION OF CITATIONS
SEARCH DETAIL
...