Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 667
Filter
1.
Infect Immun ; 92(7): e0021524, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38884473

ABSTRACT

Human babesiosis is a malaria-like illness caused by protozoan parasites of the genus Babesia. Babesia microti is responsible for most cases of human babesiosis in the United States, particularly in the Northeast and the Upper Midwest. Babesia microti is primarily transmitted to humans through the bite of infected deer ticks but also through the transfusion of blood components, particularly red blood cells. There is a high risk of severe and even fatal disease in immunocompromised patients. To date, serology testing relies on an indirect immunofluorescence assay that uses the whole Babesia microti antigen. Here, we report the construction of phage display cDNA libraries from Babesia microti-infected erythrocytes as well as human reticulocytes obtained from donors with hereditary hemochromatosis. Plasma samples were obtained from patients who were or had been infected with Babesia microti. The non-specific antibody reactivity of these plasma samples was minimized by pre-exposure to the human reticulocyte library. Using this novel experimental strategy, immunoreactive segments were identified in three Babesia microti antigens termed BmSA1 (also called BMN1-9; BmGPI12), BMN1-20 (BMN1-17; Bm32), and BM4.12 (N1-15). Moreover, our findings indicate that the major immunoreactive segment of BmSA1 does not overlap with the segment that mediates BmSA1 binding to mature erythrocytes. When used in combination, the three immunoreactive segments form the basis of a sensitive and comprehensive diagnostic immunoassay for human babesiosis, with implications for vaccine development.


Subject(s)
Antigens, Protozoan , Babesia microti , Babesiosis , Gene Library , Babesia microti/immunology , Babesia microti/genetics , Humans , Antigens, Protozoan/immunology , Antigens, Protozoan/genetics , Babesiosis/immunology , Babesiosis/parasitology , Antibodies, Protozoan/immunology , Antibodies, Protozoan/blood , Erythrocytes/parasitology , Erythrocytes/immunology , Cell Surface Display Techniques , Animals
2.
J Am Chem Soc ; 146(27): 18639-18649, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38916586

ABSTRACT

Postconsumer plastics are generally perceived as valueless with only a small portion of plastic waste being closed-loop recycled into similar products while most of them are discarded in landfills. Depositing plastic waste in landfills not only harms the environment but also signifies a substantial economic loss. Alternatively, constructing value-added chemical feedstocks via mining the waste-derived intermediate species as a carbon (C) source under mild electrochemical conditions is a sustainable strategy to realize the circular economy. This proof-of-concept work provides an attractive "turning trash to treasure" strategy by integrating electrocatalytic polyethylene terephthalate (PET) plastic upcycling with a chemical C-S coupling reaction to synthesize organosulfur compounds, hydroxymethanesulfonate (HMS). HMS can be produced efficiently (Faradaic efficiency, FE of ∼70%) via deliberately capturing electrophilic intermediates generated in the PET monomer (ethylene glycol, EG) upcycling process, followed by coupling them with nucleophilic sulfur (S) species (i.e., SO32- and HSO3-). Unlike many previous studies conducted under alkaline conditions, PET upcycling was performed over an amorphous MnO2 catalyst under near-neutral conditions, allowing for the stabilization of electrophilic intermediates. The compatibility of this strategy was further investigated by employing biomass-derived compounds as substrates. Moreover, comparable HMS yields can be achieved with real-world PET plastics, showing its enormous potential in practical application. Lastly, Density function theory (DFT) calculation reveals that the C-C cleavage step of EG is the rate-determining step (RDS), and amorphous MnO2 significantly decreases the energy barriers for both RDS and C-S coupling when compared to the crystalline counterpart.

3.
bioRxiv ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38853837

ABSTRACT

Much of our understanding of functional genomics derives from insights gained from large strain libraries including the yeast deletion collection, the GFP and TAP-tagged libraries, QTL mapping populations, among others [1-5]. A limitation of these libraries is that it is not easy to introduce reporters or make genetic perturbations to all strains in these collections. Tools such as Synthetic Genetic Arrays allow for the genetic manipulation of these libraries but are labor intensive and require specialized equipment for high throughput pinning [6]. Manipulating a diverse library en mass without losing diversity remains challenging. Ultimately, this limitation stems from the inefficiency of transformation, which is the standard method for genetic manipulation in yeast. Here, we develop a method that uses cytoduction (mating without nuclear fusion) to transfer plasmids directionally from a "Donor" to a diverse pool of "Recipient" strains. Because cytoduction uses mating, it is a natural process and is orders-of-magnitude more efficient than transformation, enabling the introduction of plasmids into high-diversity libraries with minimal impact on the diversity of the population.

4.
HLA ; 103(6): e15544, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38924641

ABSTRACT

HLA (HLA) are a major barrier to transplant success, as HLA-A and -B molecules are principal ligands for T-cells, and HLA-C for Killer cell Immunoglobulin-like Receptors (KIR), directing Natural Killer (NK) cell function. HLA-C molecules are designated "C1" or "C2" ligands based on residues 77 and 80, which determine the NK cell responses. Here, we investigated donor/recipient HLA-C mismatch associations with the development of chronic lung allograft dysfunction (CLAD) following lung transplantation (LTx). 310 LTx donor/recipient pairs were Next Generation Sequenced and assessed for C1 and C2 allotypes. PIRCHE scores were used to quantify HLA mismatching between donor/recipients at amino acid level and stratify recipients into low, moderate or highly mismatched groups (n = 103-104). Associations between C ligands and freedom from CLAD was assessed with Cox regression models and survival curves. C2/C2 recipients (n = 42) had less CLAD than those with C1/C1 (n = 138) or C1/C2 genotypes (n = 130) (p < 0.05). Incidence of CLAD was lower in C2/C2 recipients receiving a mismatched C1/C1 allograft (n = 14), compared to matched (n = 8) or heterozygous (n = 20) allografts. Furthermore, ~80% of these recipients (C2/C2 recipients receiving C1/C1 transplants) remained CLAD-free for 10 years post-LTx. Recipients with higher HLA-C mismatching had less CLAD (p < 0.05) an observation not explained by linkage disequilibrium with other HLA loci. Our data implicates a role for HLA-C in CLAD development. HLA-C mismatching was not detrimental to LTx outcome, but potentially beneficial, representing a paradigm shift in assessing donor/recipient matching. This may inform better selection of donor/recipient pairs and potentially more targeted approaches to treating CLAD.


Subject(s)
HLA-C Antigens , Histocompatibility Testing , Lung Transplantation , Humans , Lung Transplantation/adverse effects , HLA-C Antigens/genetics , HLA-C Antigens/immunology , Male , Female , Middle Aged , Adult , Genotype , Tissue Donors , Graft Rejection/immunology , Killer Cells, Natural/immunology , Aged , Primary Graft Dysfunction/immunology
5.
JBJS Case Connect ; 14(2)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38820195

ABSTRACT

CASE: A 34-year-old man was acutely treated with radial head arthroplasty and central band repair following Essex-Lopresti injury. A 38-year-old man presented with chronic longitudinal instability following failed radial head arthroplasty, which was performed for failed fixation. Treatment with revision radial head arthroplasty and central band reconstruction restored longitudinal stability. CONCLUSION: We have a low threshold to repair the central band in acute Essex-Lopresti injury with sufficient evidence of disruption. Nearly all chronic cases require central band reconstruction to restore longitudinal stability. We do not temporarily pin the DRUJ, and distal ulnar shortening is rarely indicated.


Subject(s)
Joint Instability , Humans , Male , Adult , Joint Instability/surgery , Joint Instability/etiology , Elbow Injuries , Radius Fractures/surgery , Radius Fractures/diagnostic imaging , Wrist Injuries/surgery , Arthroplasty/methods
6.
ACS Catal ; 14(7): 5314-5325, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38601783

ABSTRACT

Upcycling plastic wastes into value-added chemicals is a promising approach to put end-of-life plastic wastes back into their ecocycle. As one of the polyesters that is used daily, polyethylene terephthalate (PET) plastic waste is employed here as the model substrate. Herein, a nickel (Ni)-based catalyst was prepared via electrochemically depositing copper (Cu) species on Ni foam (NiCu/NF). The NiCu/NF formed Cu/CuO and Ni/NiO/Ni(OH)2 core-shell structures before electrolysis and reconstructed into NiOOH and CuOOH/Cu(OH)2 active species during the ethylene glycol (EG) oxidation. After oxidation, the Cu and Ni species evolved into more reduced species. An indirect mechanism was identified as the main EG oxidation (EGOR) mechanism. In EGOR, NiCu60s/NF catalyst exhibited an optimal Faradaic efficiency (FE, 95.8%) and yield rate (0.70 mmol cm-2 h-1) for formate production. Also, over 80% FE of formate was achieved when a commercial PET plastic powder hydrolysate was applied. Furthermore, commercial PET plastic water bottle waste was employed as a substrate for electrocatalytic upcycling, and pure terephthalic acid (TPA) was recovered only after 1 h electrolysis. Lastly, density functional theory (DFT) calculation revealed that the key role of Cu was significantly reducing the Gibbs free-energy barrier (ΔG) of EGOR's rate-determining step (RDS), promoting catalysts' dynamic evolution, and facilitating the C-C bond cleavage.

7.
Respirology ; 29(6): 458-470, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38648859

ABSTRACT

Lung transplantation is a well-established treatment for advanced lung disease, improving survival and quality of life. Over the last 60 years all aspects of lung transplantation have evolved significantly and exponential growth in transplant volume. This has been particularly evident over the last decade with a substantial increase in lung transplant numbers as a result of innovations in donor utilization procurement, including the use donation after circulatory death and ex-vivo lung perfusion organs. Donor lungs have proved to be surprisingly robust, and therefore the donor pool is actually larger than previously thought. Parallel to this, lung transplant outcomes have continued to improve with improved acute management as well as microbiological and immunological insights and innovations. The management of lung transplant recipients continues to be complex and heavily dependent on a tertiary care multidisciplinary paradigm. Whilst long term outcomes continue to be limited by chronic lung allograft dysfunction improvements in diagnostics, mechanistic understanding and evolutions in treatment paradigms have all contributed to a median survival that in some centres approaches 10 years. As ongoing studies build on developing novel approaches to diagnosis and treatment of transplant complications and improvements in donor utilization more individuals will have the opportunity to benefit from lung transplantation. As has always been the case, early referral for transplant consideration is important to achieve best results.


Subject(s)
Lung Transplantation , Lung Transplantation/trends , Lung Transplantation/methods , Humans , Tissue Donors/supply & distribution , Tissue and Organ Procurement , Lung Diseases/surgery , Quality of Life , Treatment Outcome
9.
Curr Opin Pulm Med ; 30(4): 398-404, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38546199

ABSTRACT

PURPOSE OF REVIEW: Lung transplantation activity continues to be limited by the availability of timely quality donor lungs. It is apparent though that progress has been made. The steady evolution of clinical practice, combined with painstaking scientific discovery and innovation are described. RECENT FINDINGS: There have been successful studies reporting innovations in the wider use and broader consideration of donation after circulatory death donor lungs, including an increasing number of transplants from each of the controlled, uncontrolled and medically assisted dying donor descriptive categories. Donors beyond age 70 years are providing better than expected long-term outcomes. Hepatitis C PCR positive donor lungs can be safely used if treated postoperatively with appropriate antivirals. Donor lung perfusion at a constant 10 degrees appears capable of significantly improving donor logistics and ex-vivo lung perfusion offers the potential of an ever-increasing number of novel donor management roles. Bioartificial and xenografts remain distant possibilities only at present. SUMMARY: Donor lungs have proved to be surprisingly robust and combined with clinical, scientific and engineering innovations, the realizable lung donor pool is proving to be larger than previously thought.


Subject(s)
Lung Transplantation , Tissue Donors , Tissue and Organ Procurement , Humans , Lung Transplantation/methods , Tissue and Organ Procurement/methods , Tissue Donors/supply & distribution , Aged
10.
J Heart Lung Transplant ; 43(6): 944-953, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38408548

ABSTRACT

BACKGROUND: COVID-19 has become a common infection affecting lung transplant recipients (LTR), who are at high risk for poor outcomes. Outcomes early in the pandemic were poor, but since the rollout of vaccination and novel COVID-19 treatments, outcomes of LTR have not been well described. Our aim was to evaluate the effect of COVID-19 on the clinical course and lung function trajectory in an Australian cohort of LTR. METHODS: Data were retrospectively collected from LTR with confirmed COVID-19 managed at Alfred Health, between August 2020 and December 2022. Baseline demographics, COVID-19 disease details (including severity) and spirometry pre- and postinfection have been analyzed. RESULTS: A total of 279 LTR were included. The cohort was comorbid, but well vaccinated, with 275/279 (98.6%) having ≥2 COVID-19 vaccines at symptom onset. Severe disease occurred in only 17 cases (6%) and overall mortality was very low (4%). Prompt treatment with antivirals, particularly remdesevir (OR 0.18, 95% CI 0.04-0.81, p = 0.02) and vaccination (OR 0.24, CI 0.08-0.81, p = 0.01), was protective. There was not a clinically significant drop in lung function post-COVID-19 with the median absolute decline in forced expiratory volume (FEV1) being 40 ml (IQR 5-120 ml, p < 0.001), with a decline of >10% occurring in only 42 patients (17%). After multivariate adjustment, only rejection before COVID-19 was significantly associated with FEV1 decline afterward (OR 3.74, 1.12-11.86, p = 0.03). CONCLUSIONS: In our highly COVID-19 vaccinated, promptly treated LTR, the majority of COVID-19 infections were mild and did not result in a clinically significant decline in lung function.


Subject(s)
COVID-19 , Lung Transplantation , Humans , COVID-19/epidemiology , COVID-19/complications , Male , Female , Retrospective Studies , Middle Aged , COVID-19 Vaccines/therapeutic use , Adult , Lung/physiopathology , Australia/epidemiology , Transplant Recipients , Severity of Illness Index , Respiratory Function Tests , Aged , Vaccination , SARS-CoV-2
11.
J Fungi (Basel) ; 10(2)2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38392766

ABSTRACT

Aspergillus fumigatus can cause different clinical manifestations/phenotypes in lung transplant (LTx) recipients and patients with chronic respiratory diseases. It can also precipitate chronic lung allograft dysfunction (CLAD) in LTx recipients. Many host factors have been linked with the severity of A. fumigatus infection, but little is known about the contribution of different A. fumigatus strains to the development of different phenotypes and CLAD. We used multi-locus microsatellite typing (MLMT) to determine if there is a relationship between strain (i.e., genotype) and phenotype in 60 patients post LTx or with chronic respiratory disease across two time periods (1 November 2006-31 March 2009 and 1 November 2015-30 June 2017). The MLMT (STRAf) assay was highly discriminatory (Simpson's diversity index of 0.9819-0.9942) with no dominant strain detected. No specific genotype-phenotype link was detected, but several clusters and related strains were associated with invasive aspergillosis (IA) and colonisation in the absence of CLAD. Host factors were linked to clinical phenotypes, with prior lymphopenia significantly more common in IA cases as compared with A. fumigatus-colonised patients (12/16 [75%] vs. 13/36 [36.1%]; p = 0.01), and prior Staphylococcus aureus infection was a significant risk factor for the development of IA (odds ratio 13.8; 95% confidence interval [2.01-279.23]). A trend toward a greater incidence of CMV reactivation post-A. fumigatus isolation was observed (0 vs. 5; p = 0.06) in LTx recipients. Further research is required to determine the pathogenicity and immunogenicity of specific A. fumigatus strains.

13.
Transpl Int ; 36: 11758, 2023.
Article in English | MEDLINE | ID: mdl-38116170

ABSTRACT

Peak spirometry after single lung transplantation (SLTx) for interstitial lung disease (ILD) is lower than after double lung transplantation (DLTx), however the pathophysiologic mechanisms are unclear. We aim to assess respiratory mechanics in SLTx and DLTx for ILD using oscillometry. Spirometry and oscillometry (tremoflo® C-100) were performed in stable SLTx and DLTx recipients in a multi-center study. Resistance (R5, R5-19) and reactance (X5) were compared between LTx recipient groups, matched by age and gender. A model of respiratory impedance using ILD and DLTx data was performed. In total, 45 stable LTx recipients were recruited (SLTx n = 23, DLTx n = 22; males: 87.0% vs. 77.3%; median age 63.0 vs. 63.0 years). Spirometry was significantly lower after SLTx compared with DLTx: %-predicted mean (SD) FEV1 [70.0 (14.5) vs. 93.5 (26.0)%]; FVC [70.5 (16.8) vs. 90.7 (12.8)%], p < 0.01. R5 and R5-19 were similar between groups (p = 0.94 and p = 0.11, respectively) yet X5 was significantly worse after SLTx: median (IQR) X5 [-1.88 (-2.89 to -1.39) vs. -1.22 (-1.87 to -0.86)] cmH2O.s/L], p < 0.01. R5 and X5 measurements from the model were congruent with measurements in SLTx recipients. The similarities in resistance, yet differences in spirometry and reactance between both transplant groups suggest the important contribution of elastic properties to the pathophysiology. Oscillometry may provide further insight into the physiological changes occurring post-LTx.


Subject(s)
Lung Diseases, Interstitial , Lung , Male , Humans , Middle Aged , Oscillometry/methods , Forced Expiratory Volume/physiology , Australia , Lung Diseases, Interstitial/surgery , Allografts
14.
Am J Transplant ; 2023 Nov 18.
Article in English | MEDLINE | ID: mdl-37981213

ABSTRACT

Outcomes after lung transplantation (LTx) remain poor, despite advances in sequencing technology and development of algorithms defining immunologic compatibility. Presently, there is no consensus regarding the best approach to define human leukocyte antigen (HLA) compatibility in LTx. In this study, we compared 5 different HLA compatibility tools in a high-resolution HLA-typed, clinically characterized cohort, to determine which approach predicts outcomes after LTx. In this retrospective single-center study, 277 donor-recipient transplant pairs were HLA-typed using next generation sequencing. HLA compatibility was defined using HLAMatchmaker, HLA epitope mismatch algorithm (HLA-EMMA), predicted indirectly recognizable HLA epitopes (PIRCHE), electrostatic mismatch score (EMS), and amino acid mismatches (AAMMs). Associations with HLA mismatching and survival, chronic lung allograft dysfunction (CLAD), and anti-HLA donor-specific antibody (DSA) were calculated using adjusted Cox proportional modeling. Lower HLA class II mismatching was associated with improved survival as defined by HLAMatchmaker (P < .01), HLA-EMMA (P < .05), PIRCHE (P < .05), EMS (P < .001), and AAMM (P < .01). All approaches demonstrated that HLA-DRB1345 matching was associated with freedom from restrictive allograft syndrome and HLA-DQ matching with reduced DSA development. Reducing the level of HLA mismatching, in T cell or B cell epitopes, electrostatic differences, or amino acid, can improve outcomes after LTx and potentially guide immunosuppression strategies.

15.
mBio ; 14(5): e0158923, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37681946

ABSTRACT

IMPORTANCE: Human metapneumovirus is an important respiratory pathogen that causes significant morbidity and mortality, particularly in the very young, the elderly, and the immunosuppressed. However, the molecular details of how this virus spreads to new target cells are unclear. This work provides important new information on the formation of filamentous structures that are consistent with virus particles and adds critical new insight into the structure of extensions between cells that form during infection. In addition, it demonstrates for the first time the movement of viral replication centers through these intercellular extensions, representing a new mode of direct cell-to-cell spread that may be applicable to other viral systems.


Subject(s)
Metapneumovirus , Humans , Aged , Cell Line , Cytoskeleton , Inclusion Bodies , Virion
16.
J Am Chem Soc ; 145(33): 18432-18438, 2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37486970

ABSTRACT

A series of monodisperse cyclic and linear poly(d,l-lactide)s (c-PLA and l-PLA, respectively) were prepared with various degrees of polymerization (DP) using an iterative convergent synthesis approach. The absence of a molecular weight distribution provided us a chance to study their mechanochemical reactivity without obstructions arising from the size distribution. Additionally, we prepared l- and c-PLAs with identical DPs, which enabled us to attribute differences in scission rates to the cyclic polymer architecture alone. The polymers were subjected to ultrasonication (US) and ball-mill grinding (BMG), and their degradation kinetics were explored. Up to 9.0 times larger scission rates were observed for l-PLA (compared to c-PLA) with US, but the difference was less than 1.9 times with BMG. Fragmentation requires two backbone scission events for c-PLA, and we were able to observe linear intermediates (formed after a single scission) for the first time. We also developed a new method of studying the dynamic memory effect in US by characterizing and comparing the daughter fragment molecular weight distributions of l- and c-PLAs. These results provide new insights into the influence of the cyclic polymer architecture on mechanochemical reactions as well as differences in reactivity observed with US and BMG.

17.
Behav Ecol ; 34(4): 613-620, 2023.
Article in English | MEDLINE | ID: mdl-37434639

ABSTRACT

Intraspecific weapon polymorphisms that arise via conditional thresholds may be affected by juvenile experience such as predator encounters, yet this idea has rarely been tested. The New Zealand harvestman Forsteropsalis pureora has three male morphs: majors (alphas and betas) are large-bodied with large chelicerae used in male-male contests, while minors (gammas) are small-bodied with small chelicerae and scramble to find mates. Individuals use leg autotomy to escape predators and there is no regeneration of the missing leg. Here, we tested whether juvenile experience affects adult morph using leg autotomy scars as a proxy of predator encounters. Juvenile males that lost at least one leg (with either locomotory or sensory function) had a 45 times higher probability of becoming a minor morph at adulthood than intact juvenile males. Leg loss during development may affect foraging, locomotion, and/or physiology, potentially linking a juvenile's predator encounters to their final adult morph and future reproductive tactic.

18.
bioRxiv ; 2023 Jul 09.
Article in English | MEDLINE | ID: mdl-37461484

ABSTRACT

Calcium and Integrin-Binding Protein 2 (CIB2) is an essential subunit of the mechano-electrical transduction (MET) complex in mammalian auditory hair cells. CIB2 binds to pore-forming subunits of the MET channel, TMC1/2 and is required for their transport and/or retention at the tips of mechanosensory stereocilia. Since genetic ablation of CIB2 results in complete loss of MET currents, the exact role of CIB2 in the MET complex remains elusive. Here, we generated a new mouse strain with deafness-causing p.R186W mutation in Cib2 and recorded small but still measurable MET currents in the cochlear outer hair cells. We found that R186W variant causes increase of the resting open probability of MET channels, steeper MET current dependence on hair bundle deflection (I-X curve), loss of fast adaptation, and increased leftward shifts of I-X curves upon hair cell depolarization. Combined with AlphaFold2 prediction that R186W disrupts one of the multiple interacting sites between CIB2 and TMC1/2, our data suggest that CIB2 mechanically constraints TMC1/2 conformations to ensure proper force sensitivity and dynamic range of the MET channels. Using a custom piezo-driven stiff probe deflecting the hair bundles in less than 10 µs, we also found that R186W variant slows down the activation of MET channels. This phenomenon, however, is unlikely to be due to direct effect on MET channels, since we also observed R186W-evoked disruption of the electron-dense material at the tips of mechanotransducing stereocilia and the loss of membrane-shaping BAIAP2L2 protein from the same location. We concluded that R186W variant of CIB2 disrupts force sensitivity of the MET channels and force transmission to these channels.

19.
Cell Stem Cell ; 30(7): 950-961.e7, 2023 07 06.
Article in English | MEDLINE | ID: mdl-37419105

ABSTRACT

Mechanosensitive hair cells in the cochlea are responsible for hearing but are vulnerable to damage by genetic mutations and environmental insults. The paucity of human cochlear tissues makes it difficult to study cochlear hair cells. Organoids offer a compelling platform to study scarce tissues in vitro; however, derivation of cochlear cell types has proven non-trivial. Here, using 3D cultures of human pluripotent stem cells, we sought to replicate key differentiation cues of cochlear specification. We found that timed modulations of Sonic Hedgehog and WNT signaling promote ventral gene expression in otic progenitors. Ventralized otic progenitors subsequently give rise to elaborately patterned epithelia containing hair cells with morphology, marker expression, and functional properties consistent with both outer and inner hair cells in the cochlea. These results suggest that early morphogenic cues are sufficient to drive cochlear induction and establish an unprecedented system to model the human auditory organ.


Subject(s)
Hedgehog Proteins , Pluripotent Stem Cells , Humans , Hedgehog Proteins/metabolism , Cochlea , Hair Cells, Auditory, Inner , Organoids , Cell Differentiation/physiology
20.
Otolaryngol Clin North Am ; 56(4): 791-800, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37380325

ABSTRACT

The practicing otolaryngologist frequently encounters consultation for injuries in the head and neck. Restoration of form and function is essential to normal activities of daily living and quality of life. This discussion intends to provide the reader with an up-to-date discussion of various evidence-based practice trends related to head and neck trauma. The discussion focuses on the acute management of trauma with minor emphasis on secondary management of injuries. Specific injuries related to the craniomaxillofacial skeleton, laryngotracheal complex, vascularity, and soft tissues are explored.


Subject(s)
Activities of Daily Living , Quality of Life , Humans , Head , Neck , Otolaryngologists
SELECTION OF CITATIONS
SEARCH DETAIL
...