Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 579: 893-901, 2017 Feb 01.
Article in English | MEDLINE | ID: mdl-27887824

ABSTRACT

Based on an analysis of sediment cores from Baptiste Lake (Alberta, Canada), we quantified century-scale trends in cyanobacteria and cyanotoxins, and identified possible drivers of toxigenic cyanobacteria. We measured concentrations of microcystins and pigments preserved in the sediment as proxies of toxigenic cyanobacteria and phytoplankton communities, respectively, while fossil diatom assemblages were used to infer past nutrient concentrations. Microcystins were detected in older sediments (ca. 1800s), pre-dating any significant alteration to the watershed. This demonstrates that toxigenic cyanobacteria may not be a recent phenomenon in eutrophic ecosystems. The dominant variants of microcystin throughout the sediment core were microcystin-LA and microcystin-LR. Other congeners including -LY, -7dmLR, -WR, -LF, -YR, and -LW (-RR was not detected) were mainly found in the upper layers of sediment (post 1980s). Starting in the 1990s, concentrations of microcystins both in the water column and in the sediment record increased in parallel. Total sediment microcystins were strongly correlated with historical nitrogen and phosphorus concentrations inferred from diatom assemblages (r=0.80-0.81, p<0.001, n=22); both nutrients increased over the past two decades coincident with the intensification of agriculture. Microcystins also tracked the rise in cyanobacterial pigments present throughout the core. In contrast, we found no relationship between climate-related variables and sediment microcystin concentrations, although such relationships were detected over the monitoring record with respect to water column concentrations. Overall, the rise in sediment microcystins was much greater than the rise in sediment cyanobacteria and diatom inferred nutrient concentrations. Furthermore, we demonstrate that the reconstruction of the microcystin sediment record can provide important insight for the development of realistic lake management goals. Applying this analytical approach to different lakes and regions of the world, where both natural and anthropogenic gradients vary, has the potential to markedly improve our understanding of long-term drivers of cyanotoxin production.


Subject(s)
Environmental Monitoring , Lakes/microbiology , Microcystins/analysis , Water Pollutants, Chemical/analysis , Cyanobacteria/growth & development , Geologic Sediments , Phytoplankton
3.
Science ; 290(5492): 795-9, 2000 Oct 27.
Article in English | MEDLINE | ID: mdl-11052941

ABSTRACT

The effects of climate variability on Pacific salmon abundance are uncertain because historical records are short and are complicated by commercial harvesting and habitat alteration. We use lake sediment records of delta15N and biological indicators to reconstruct sockeye salmon abundance in the Bristol Bay and Kodiak Island regions of Alaska over the past 300 years. Marked shifts in populations occurred over decades during this period, and some pronounced changes appear to be related to climatic change. Variations in salmon returns due to climate or harvesting can have strong impacts on sockeye nursery lake productivity in systems where adult salmon carcasses are important nutrient sources.


Subject(s)
Climate , Ecosystem , Salmon/physiology , Alaska , Animals , Diatoms , Fisheries , Fresh Water , Geologic Sediments/chemistry , Industry , Nitrogen Isotopes/analysis , Pacific Ocean , Plankton , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...