Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 310
Filter
2.
Ageing Res Rev ; 98: 102343, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38762101

ABSTRACT

Glucagon-like peptide-1 (GLP-1) receptor agonist-based drugs (incretin mimetics) have meaningfully impacted current treatment of type 2 diabetes mellitus (T2DM), and their actions on satiety and weight loss have led to their use as an obesity medication. With multiple pleotropic actions beyond their insulinotropic and weight loss ones, including anti-inflammatory and anti-insulin-resistant effects selectively mediated by their receptors present within numerous organs, this drug class offers potential efficacy for an increasing number of systemic and neurological disorders whose current treatment is inadequate. Among these are a host of neurodegenerative disorders that are prevalent in the elderly, such as Parkinson's and Alzheimer's disease, which have bucked previous therapeutic approaches. An increasing preclinical, clinical, and epidemiological literature suggests that select incretin mimetics may provide an effective treatment strategy, but 'which ones' for 'which disorders' and 'when' remain key open questions.


Subject(s)
Diabetes Mellitus, Type 2 , Neurodegenerative Diseases , Obesity , Humans , Diabetes Mellitus, Type 2/drug therapy , Neurodegenerative Diseases/drug therapy , Obesity/drug therapy , Animals , Hypoglycemic Agents/therapeutic use , Hypoglycemic Agents/pharmacology , Incretins/therapeutic use , Glucagon-Like Peptide-1 Receptor/agonists , Anti-Obesity Agents/therapeutic use , Anti-Obesity Agents/pharmacology
3.
Ageing Res Rev ; : 102336, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38740308

ABSTRACT

Several proteins play critical roles in vulnerability or resistance to neurodegenerative disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), and frontotemporal dementia (FTD). Regulation of these proteins is critical to maintaining healthy neurohomeostasis. In addition to transcription factors regulating gene transcription and microRNAs regulating mRNA translation, natural antisense transcripts (NATs) regulate mRNA levels, splicing, and translation. NATs' roles are significant in regulating key protein-coding genes associated with neurodegenerative disorders. Elucidating the functions of these NATs could prove useful in treating or preventing diseases. NAT activity is not restricted to mRNA translation; it can also regulate DNA (de)methylation and other gene expression steps. NATs are noncoding RNAs (ncRNAs) encoded by DNA sequences overlapping the pertinent protein genes. These NATs have complex structures, including introns and exons, and therefore bind their target genes, precursor mRNAs (pre-mRNAs), and mature RNAs. They can occur at the 5'- or 3'-ends of a mRNA-coding sequence or internally to a parent gene. NATs can downregulate translation, e.g., microtubule-associated protein tau (MAPT) antisense-1 gene (MAPT-AS1), or upregulate translation, e.g., ß-Amyloid site Cleaving Enzyme 1 (BACE1) antisense gene (BACE1-AS). Regulation of NATs can parallel pathogenesis, wherein a "pathogenic" NAT (e.g., BACE1-AS) is upregulated under pathogenic conditions, while a "protective" NAT (e.g., MAPT-AS1) is downregulated under pathogenic conditions. As a relatively underexplored endogenous control mechanism of protein expression, NATs may present novel mechanistic targets to prevent or ameliorate aging-related disorders.

4.
J Biomed Sci ; 31(1): 38, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38627765

ABSTRACT

BACKGROUND: Mitochondria are essential organelles involved in cellular energy production. Changes in mitochondrial function can lead to dysfunction and cell death in aging and age-related disorders. Recent research suggests that mitochondrial dysfunction is closely linked to neurodegenerative diseases. Glucagon-like peptide-1 receptor (GLP-1R) agonist has gained interest as a potential treatment for Parkinson's disease (PD). However, the exact mechanisms responsible for the therapeutic effects of GLP-1R-related agonists are not yet fully understood. METHODS: In this study, we explores the effects of early treatment with PT320, a sustained release formulation of the GLP-1R agonist Exenatide, on mitochondrial functions and morphology in a progressive PD mouse model, the MitoPark (MP) mouse. RESULTS: Our findings demonstrate that administration of a clinically translatable dose of PT320 ameliorates the reduction in tyrosine hydroxylase expression, lowers reactive oxygen species (ROS) levels, and inhibits mitochondrial cytochrome c release during nigrostriatal dopaminergic denervation in MP mice. PT320 treatment significantly preserved mitochondrial function and morphology but did not influence the reduction in mitochondria numbers during PD progression in MP mice. Genetic analysis indicated that the cytoprotective effect of PT320 is attributed to a reduction in the expression of mitochondrial fission protein 1 (Fis1) and an increase in the expression of optic atrophy type 1 (Opa1), which is known to play a role in maintaining mitochondrial homeostasis and decreasing cytochrome c release through remodeling of the cristae. CONCLUSION: Our findings suggest that the early administration of PT320 shows potential as a neuroprotective treatment for PD, as it can preserve mitochondrial function. Through enhancing mitochondrial health by regulating Opa1 and Fis1, PT320 presents a new neuroprotective therapy in PD.


Subject(s)
Mitochondrial Diseases , Parkinson Disease , Mice , Animals , Dopamine/metabolism , Cytochromes c/metabolism , Cytochromes c/pharmacology , Cytochromes c/therapeutic use , Parkinson Disease/genetics , Mitochondria , Mitochondrial Diseases/drug therapy , Mitochondrial Diseases/metabolism , Disease Models, Animal
5.
Geroscience ; 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38563864

ABSTRACT

Epidemiological studies report an elevated risk of Parkinson's disease (PD) in patients with type 2 diabetes mellitus (T2DM) that is mitigated in those prescribed dipeptidyl peptidase 4 (DPP-4) inhibitors. With an objective to characterize clinically translatable doses of DPP-4 inhibitors (gliptins) in a well-characterized PD rodent model, sitagliptin, PF-00734,200 or vehicle were orally administered to rats initiated either 7-days before or 7-days after unilateral medial forebrain bundle 6-hydroxydopamine (6-OHDA) lesioning. Measures of dopaminergic cell viability, dopamine content, neuroinflammation and neurogenesis were evaluated thereafter in ipsi- and contralateral brain. Plasma and brain incretin and DPP-4 activity levels were quantified. Furthermore, brain incretin receptor levels were age-dependently evaluated in rodents, in 6-OHDA challenged animals and human subjects with/without PD. Cellular studies evaluated neurotrophic/neuroprotective actions of combined incretin administration. Pre-treatment with oral sitagliptin or PF-00734,200 reduced methamphetamine (meth)-induced rotation post-lesioning and dopaminergic degeneration in lesioned substantia nigra pars compacta (SNc) and striatum. Direct intracerebroventricular gliptin administration lacked neuroprotective actions, indicating that systemic incretin-mediated mechanisms underpin gliptin-induced favorable brain effects. Post-treatment with a threefold higher oral gliptin dose, likewise, mitigated meth-induced rotation, dopaminergic neurodegeneration and neuroinflammation, and augmented neurogenesis. These gliptin-induced actions associated with 70-80% plasma and 20-30% brain DPP-4 inhibition, and elevated plasma and brain incretin levels. Brain incretin receptor protein levels were age-dependently maintained in rodents, preserved in rats challenged with 6-OHDA, and in humans with PD. Combined GLP-1 and GIP receptor activation in neuronal cultures resulted in neurotrophic/neuroprotective actions superior to single agonists alone. In conclusion, these studies support further evaluation of the repurposing of clinically approved gliptins as a treatment strategy for PD.

6.
Geroscience ; 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38532069

ABSTRACT

The endogenous incretins glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) possess neurotrophic, neuroprotective, and anti-neuroinflammatory actions. The dipeptidyl peptidase 4 (DPP-4) inhibitor sitagliptin reduces degradation of endogenous GLP-1 and GIP, and, thereby, extends the circulation of these protective peptides. The current nonhuman primate (NHP) study evaluates whether human translational sitagliptin doses can elevate systemic and central nervous system (CNS) levels of GLP-1/GIP in naive, non-lesioned NHPs, in line with our prior rodent studies that demonstrated sitagliptin efficacy in preclinical models of Parkinson's disease (PD). PD is an age-associated neurodegenerative disorder whose current treatment is inadequate. Repositioning of the well-tolerated and efficacious diabetes drug sitagliptin provides a rapid approach to add to the therapeutic armamentarium for PD. The pharmacokinetics and pharmacodynamics of 3 oral sitagliptin doses (5, 20, and 100 mg/kg), equivalent to the routine clinical dose, a tolerated higher clinical dose and a maximal dose in monkey, were evaluated. Peak plasma sitagliptin levels were aligned both with prior reports in humans administered equivalent doses and with those in rodents demonstrating reduction of PD associated neurodegeneration. Although CNS uptake of sitagliptin was low (cerebrospinal fluid (CSF)/plasma ratio 0.01), both plasma and CSF concentrations of GLP-1/GIP were elevated in line with efficacy in prior rodent PD studies. Additional cellular studies evaluating human SH-SY5Y and primary rat ventral mesencephalic cultures challenged with 6-hydroxydopamine, established cellular models of PD, demonstrated that joint treatment with GLP-1 + GIP mitigated cell death, particularly when combined with DPP-4 inhibition to maintain incretin levels. In conclusion, this study provides a supportive translational step towards the clinical evaluation of sitagliptin in PD and other neurodegenerative disorders for which aging, similarly, is the greatest risk factor.

7.
Cell Transplant ; 33: 9636897241237049, 2024.
Article in English | MEDLINE | ID: mdl-38483119

ABSTRACT

Neuronal damage resulting from traumatic brain injury (TBI) causes disruption of neuronal projections and neurotransmission that contribute to behavioral deficits. Cellular generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) is an early event following TBI. ROS often damage DNA, lipids, proteins, and carbohydrates while RNS attack proteins. The products of lipid peroxidation 4-hydroxynonenal (4-HNE) and protein nitration 3-nitrotyrosine (3-NT) are often used as indicators of oxidative and nitrosative damages, respectively. Increasing evidence has shown that striatum is vulnerable to damage from TBI with a disturbed dopamine neurotransmission. TBI results in neurodegeneration, oxidative stress, neuroinflammation, neuronal apoptosis, and autophagy in the striatum and contribute to motor or behavioral deficits. Pomalidomide (Pom) is a Food and Drug Administration (FDA)-approved immunomodulatory drug clinically used in treating multiple myeloma. We previously showed that Pom reduces neuroinflammation and neuronal death induced by TBI in rat cerebral cortex. Here, we further compared the effects of Pom in cortex and striatum focusing on neurodegeneration, oxidative and nitrosative damages, as well as neuroinflammation following TBI. Sprague-Dawley rats subjected to a controlled cortical impact were used as the animal model of TBI. Systemic administration of Pom (0.5 mg/kg, intravenous [i.v.]) at 5 h post-injury alleviated motor behavioral deficits, contusion volume at 24 h after TBI. Pom alleviated TBI-induced neurodegeneration stained by Fluoro-Jade C in both cortex and striatum. Notably, Pom treatment reduces oxidative and nitrosative damages in cortex and striatum and is more efficacious in striatum (93% reduction in 4-HNE-positive and 84% reduction in 3-NT-positive neurons) than in cerebral cortex (42% reduction in 4-HNE-positive and 55% reduction in 3-NT-positive neurons). In addition, Pom attenuated microgliosis, astrogliosis, and elevations of proinflammatory cytokines in cortical and striatal tissue. We conclude that Pom may contribute to improved motor behavioral outcomes after TBI through targeting oxidative/nitrosative damages and neuroinflammation.


Subject(s)
Brain Injuries, Traumatic , Neuroinflammatory Diseases , Thalidomide/analogs & derivatives , Rats , Animals , Rats, Sprague-Dawley , Reactive Oxygen Species , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/drug therapy , Brain Injuries, Traumatic/metabolism , Oxidative Stress , Cytokines/metabolism , Cerebral Cortex/metabolism , Disease Models, Animal
8.
Sci Rep ; 14(1): 3502, 2024 02 12.
Article in English | MEDLINE | ID: mdl-38346990

ABSTRACT

Depression negatively impacts mood, behavior, and mental and physical health. It is the third leading cause of suicides worldwide and leads to decreased quality of life. We examined 18 genes available at the genetic testing registry (GTR) from the National Center for Biotechnological Information to investigate molecular patterns present in depression-associated genes. Different genotypes and differential expression of the genes are responsible for ensuing depression. The present study, investigated codon pattern analysis, which might play imperative roles in modulating gene expression of depression-associated genes. Of the 18 genes, seven and two genes tended to up- and down-regulate, respectively, and, for the remaining genes, different genotypes, an outcome of SNPs were responsible alone or in combination with differential expression for different conditions associated with depression. Codon context analysis revealed the abundance of identical GTG-GTG and CTG-CTG pairs, and the rarity of methionine-initiated codon pairs. Information based on codon usage, preferred codons, rare, and codon context might be used in constructing a deliverable synthetic construct to correct the gene expression level of the human body, which is altered in the depressive state. Other molecular signatures also revealed the role of evolutionary forces in shaping codon usage.


Subject(s)
Codon Usage , Suicide , Humans , Depression/genetics , Quality of Life , Codon/genetics
9.
Healthcare (Basel) ; 11(21)2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37958035

ABSTRACT

Smartphone use, particularly at night, has been shown to provoke various circadian sleep-wake rhythm disorders such as insomnia and excessive daytime tiredness. This relationship has been mainly scrutinized among patient groups with higher rates of smartphone usage, particularly adolescents and children. However, it remains obscure how smartphone usage impacts sleep parameters in adults, especially undergraduate college students. This study sought to (1) investigate the association between smartphone use (actual screen time) and four sleep parameters: Pittsburgh sleep quality score (PSQI), self-reported screen time, bedtime, and rise time; (2) compare the seven PSQI components between good and poor sleep quality subjects. In total, 264 undergraduate medical students (aged 17 to 25 years) were recruited from the Government Doon Medical College, Dehradun, India. All participants completed a sleep questionnaire, which was electronically shared via a WhatsApp invitation link. Hierarchical and multinomial regression analyses were performed in relation to (1) and (2). The average PSQI score was 5.03 ± 0.86, with approximately one in two respondents (48.3%) having a poor sleep index. Smartphone use significantly predicted respondents' PSQI score (ß = 0.142, p = 0.040, R2 = 0.027), perceived screen time (ß = 0.113, p = 0.043, R2 = 343), bedtime (ß = 0.106, p = 0.042, R2 = 045), and rise time (ß = 0.174, p = 0.015, R2 = 0.028). When comparing poor-quality sleep (PSQI ≥ 5) to good-quality sleep (PSQI < 5), with good-quality sleep as the reference, except sleep efficiency and sleep medications (p > 0.05), five PSQI components declined significantly: subjective sleep quality (ß = -0.096, p < 0.001); sleep latency (ß = -0.034, p < 0.001); sleep duration (ß = -0.038, p < 0.001); sleep disturbances (ß = 1.234, p < 0.001); and sleep dysfunction (ß = -0.077, p < 0.001). Consequently, public health policymakers should take this evidence into account when developing guidelines around smartphone use-i.e., the when, where, and how much smartphone use-to promote improved sleep behaviour and reduce the rate of sleep-wake rhythm disorders.

10.
Int J Mol Sci ; 24(22)2023 Nov 10.
Article in English | MEDLINE | ID: mdl-38003381

ABSTRACT

This Special Issue of the International Journal of Molecular Sciences (IJMS) focuses on 'Genetic and Molecular Regulations of Neuronal Activity' [...].

11.
J Clin Med ; 12(15)2023 Aug 05.
Article in English | MEDLINE | ID: mdl-37568540

ABSTRACT

Neuroendocrine neoplasms (NENs) are a group of heterogeneous tumors with neuroendocrine differentiation that can arise from any organ. They account for 2% of all malignancies in the United States. A significant proportion of NEN patients experience endocrine imbalances consequent to increased amine or peptide hormone secretion, impacting their quality of life and prognosis. Over the last decade, pathologic categorization, diagnostic techniques and therapeutic choices for NENs-both well-differentiated neuroendocrine tumors (NETs) and poorly differentiated neuroendocrine carcinomas (NECs)-have appreciably evolved. Diagnosis of NEN mostly follows a suspicion from clinical features or incidental imaging findings. Hormonal or non-hormonal biomarkers (like serum serotonin, urine 5-HIAA, gastrin and VIP) and histology of a suspected NEN is, therefore, critical for both confirmation of the diagnosis and classification as an NET or NEC. Therapy for NENs has progressed recently based on a better molecular understanding, including the involvement of mTOR, VEGF and peptide receptor radionuclide therapy (PRRT), which add to the growing evidence supporting the possibility of treatment beyond complete resection. As the incidence of NENs is on the rise in the United States and several other countries, physicians are more likely to see these cases, and their better understanding may support earlier diagnosis and tailoring treatment to the patient. We have compiled clinically significant evidence for NENs, including relevant changes to clinical practice that have greatly updated our diagnostic and therapeutic approach for NEN patients.

12.
Cells ; 12(10)2023 05 11.
Article in English | MEDLINE | ID: mdl-37408199

ABSTRACT

Neuroinflammation is a unifying factor among all acute central nervous system (CNS) injuries and chronic neurodegenerative disorders. Here, we used immortalized microglial (IMG) cells and primary microglia (PMg) to understand the roles of the GTPase Ras homolog gene family member A (RhoA) and its downstream targets Rho-associated coiled-coil-containing protein kinases 1 and 2 (ROCK1 and ROCK2) in neuroinflammation. We used a pan-kinase inhibitor (Y27632) and a ROCK1- and ROCK2-specific inhibitor (RKI1447) to mitigate a lipopolysaccharide (LPS) challenge. In both the IMG cells and PMg, each drug significantly inhibited pro-inflammatory protein production detected in media (TNF-α, IL-6, KC/GRO, and IL-12p70). In the IMG cells, this resulted from the inhibition of NF-κB nuclear translocation and the blocking of neuroinflammatory gene transcription (iNOS, TNF-α, and IL-6). Additionally, we demonstrated the ability of both compounds to block the dephosphorylation and activation of cofilin. In the IMG cells, RhoA activation with Nogo-P4 or narciclasine (Narc) exacerbated the inflammatory response to the LPS challenge. We utilized a siRNA approach to differentiate ROCK1 and ROCK2 activity during the LPS challenges and showed that the blockade of both proteins may mediate the anti-inflammatory effects of Y27632 and RKI1447. Using previously published data, we show that genes in the RhoA/ROCK signaling cascade are highly upregulated in the neurodegenerative microglia (MGnD) from APP/PS-1 transgenic Alzheimer's disease (AD) mice. In addition to illuminating the specific roles of RhoA/ROCK signaling in neuroinflammation, we demonstrate the utility of using IMG cells as a model for primary microglia in cellular studies.


Subject(s)
Microglia , Tumor Necrosis Factor-alpha , Mice , Animals , Microglia/metabolism , Tumor Necrosis Factor-alpha/metabolism , Neuroinflammatory Diseases , Interleukin-6/metabolism , Lipopolysaccharides/pharmacology , Lipopolysaccharides/metabolism , Mice, Transgenic
13.
Glia ; 71(10): 2473-2494, 2023 10.
Article in English | MEDLINE | ID: mdl-37401784

ABSTRACT

Nogo-A, B, and C are well described members of the reticulon family of proteins, most well known for their negative regulatory effects on central nervous system (CNS) neurite outgrowth and repair following injury. Recent research indicates a relationship between Nogo-proteins and inflammation. Microglia, the brain's immune cells and inflammation-competent compartment, express Nogo protein, although specific roles of the Nogo in these cells is understudied. To examine inflammation-related effects of Nogo, we generated a microglial-specific inducible Nogo KO (MinoKO) mouse and challenged the mouse with a controlled cortical impact (CCI) traumatic brain injury (TBI). Histological analysis shows no difference in brain lesion sizes between MinoKO-CCI and Control-CCI mice, although MinoKO-CCI mice do not exhibit the levels of ipsilateral lateral ventricle enlargement as injury matched controls. Microglial Nogo-KO results in decreased lateral ventricle enlargement, microglial and astrocyte immunoreactivity, and increased microglial morphological complexity compared to injury matched controls, suggesting decreased tissue inflammation. Behaviorally, healthy MinoKO mice do not differ from control mice, but automated tracking of movement around the home cage and stereotypic behavior, such as grooming and eating (termed cage "activation"), following CCI is significantly elevated. Asymmetrical motor function, a deficit typical of unilaterally brain lesioned rodents, was not detected in CCI injured MinoKO mice, while the phenomenon was present in CCI injured controls 1-week post-injury. Overall, our studies show microglial Nogo as a negative regulator of recovery following brain injury. To date, this is the first evaluation of the roles microglial specific Nogo in a rodent injury model.


Subject(s)
Brain Injuries, Traumatic , Brain Injuries , Nogo Proteins , Animals , Mice , Brain Injuries/pathology , Brain Injuries, Traumatic/pathology , Disease Models, Animal , Inflammation/metabolism , Mice, Inbred C57BL , Microglia/metabolism , Nogo Proteins/metabolism
14.
Biomolecules ; 13(5)2023 04 26.
Article in English | MEDLINE | ID: mdl-37238617

ABSTRACT

The immunomodulatory imide drug (IMiD) class, which includes the founding drug member thalidomide and later generation drugs, lenalidomide and pomalidomide, has dramatically improved the clinical treatment of specific cancers, such as multiple myeloma, and it combines potent anticancer and anti-inflammatory actions. These actions, in large part, are mediated by IMiD binding to the human protein cereblon that forms a critical component of the E3 ubiquitin ligase complex. This complex ubiquitinates and thereby regulates the levels of multiple endogenous proteins. However, IMiD-cereblon binding modifies cereblon's normal targeted protein degradation towards a new set of neosubstrates that underlies the favorable pharmacological action of classical IMiDs, but also their adverse actions-in particular, their teratogenicity. The ability of classical IMiDs to reduce the synthesis of key proinflammatory cytokines, especially TNF-α levels, makes them potentially valuable to reposition as drugs to mitigate inflammatory-associated conditions and, particularly, neurological disorders driven by an excessive neuroinflammatory element, as occurs in traumatic brain injury, Alzheimer's and Parkinson's diseases, and ischemic stroke. The teratogenic and anticancer actions of classical IMiDs are substantial liabilities for effective drugs in these disorders and can theoretically be dialed out of the drug class. We review a select series of novel IMiDs designed to avoid binding with human cereblon and/or evade degradation of downstream neosubstrates considered to underpin the adverse actions of thalidomide-like drugs. These novel non-classical IMiDs hold potential as new medications for erythema nodosum leprosum (ENL), a painful inflammatory skin condition associated with Hansen's disease for which thalidomide remains widely used, and, in particular, as a new treatment strategy for neurodegenerative disorders in which neuroinflammation is a key component.


Subject(s)
Multiple Myeloma , Neurodegenerative Diseases , Humans , Thalidomide/pharmacology , Thalidomide/therapeutic use , Immunomodulating Agents , Neuroinflammatory Diseases , Multiple Myeloma/drug therapy , Ubiquitin-Protein Ligases/metabolism , Neurodegenerative Diseases/drug therapy
15.
Neural Regen Res ; 18(10): 2127-2133, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37056119

ABSTRACT

Toxic aggregated amyloid-ß accumulation is a key pathogenic event in Alzheimer's disease. Treatment approaches have focused on the suppression, deferral, or dispersion of amyloid-ß fibers and plaques. Gene therapy has evolved as a potential therapeutic option for treating Alzheimer's disease, owing to its rapid advancement over the recent decade. Small interfering ribonucleic acid has recently garnered considerable attention in gene therapy owing to its ability to down-regulate genes with high sequence specificity and an almost limitless number of therapeutic targets, including those that were once considered undruggable. However, lackluster cellular uptake and the destabilization of small interfering ribonucleic acid in its biological environment restrict its therapeutic application, necessitating the development of a vector that can safeguard the genetic material from early destruction within the bloodstream while effectively delivering therapeutic genes across the blood-brain barrier. Nanotechnology has emerged as a possible solution, and several delivery systems utilizing nanoparticles have been shown to bypass key challenges regarding small interfering ribonucleic acid delivery. By reducing the enzymatic breakdown of genetic components, nanomaterials as gene carriers have considerably enhanced the efficiency of gene therapy. Liposomes, polymeric nanoparticles, magnetic nanoparticles, dendrimers, and micelles are examples of nanocarriers that have been designed, and each has its own set of features. Furthermore, recent advances in the specific delivery of neurotrophic compounds via gene therapy have provided promising results in relation to augmenting cognitive abilities. In this paper, we highlight the use of different nanocarriers in targeted gene delivery and small interfering ribonucleic acid-mediated gene silencing as a potential platform for treating Alzheimer's disease.

16.
J Biomed Sci ; 30(1): 16, 2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36872339

ABSTRACT

BACKGROUND: Quelling microglial-induced excessive neuroinflammation is a potential treatment strategy across neurological disorders, including traumatic brain injury (TBI), and can be achieved by thalidomide-like drugs albeit this approved drug class is compromised by potential teratogenicity. Tetrafluorobornylphthalimide (TFBP) and tetrafluoronorbornylphthalimide (TFNBP) were generated to retain the core phthalimide structure of thalidomide immunomodulatory imide drug (IMiD) class. However, the classical glutarimide ring was replaced by a bridged ring structure. TFBP/TFNBP were hence designed to retain beneficial anti-inflammatory properties of IMiDs but, importantly, hinder cereblon binding that underlies the adverse action of thalidomide-like drugs. METHODS: TFBP/TFNBP were synthesized and evaluated for cereblon binding and anti-inflammatory actions in human and rodent cell cultures. Teratogenic potential was assessed in chicken embryos, and in vivo anti-inflammatory actions in rodents challenged with either lipopolysaccharide (LPS) or controlled cortical impact (CCI) moderate traumatic brain injury (TBI). Molecular modeling was performed to provide insight into drug/cereblon binding interactions. RESULTS: TFBP/TFNBP reduced markers of inflammation in mouse macrophage-like RAW264.7 cell cultures and in rodents challenged with LPS, lowering proinflammatory cytokines. Binding studies demonstrated minimal interaction with cereblon, with no resulting degradation of teratogenicity-associated transcription factor SALL4 or of teratogenicity in chicken embryo assays. To evaluate the biological relevance of its anti-inflammatory actions, two doses of TFBP were administered to mice at 1 and 24 h post-injury following CCI TBI. Compared to vehicle treatment, TFBP reduced TBI lesion size together with TBI-induction of an activated microglial phenotype, as evaluated by immunohistochemistry 2-weeks post-injury. Behavioral evaluations at 1- and 2-weeks post-injury demonstrated TFBP provided more rapid recovery of TBI-induced motor coordination and balance impairments, versus vehicle treated mice. CONCLUSION: TFBP and TFNBP represent a new class of thalidomide-like IMiDs that lower proinflammatory cytokine generation but lack binding to cereblon, the main teratogenicity-associated mechanism. This aspect makes TFBP and TFNBP potentially safer than classic IMiDs for clinical use. TFBP provides a strategy to mitigate excessive neuroinflammation associated with moderate severity TBI to, thereby, improve behavioral outcome measures and warrants further investigation in neurological disorders involving a neuroinflammatory component.


Subject(s)
Brain Injuries, Traumatic , Brain Injuries , Chick Embryo , Humans , Animals , Mice , Thalidomide , Neuroinflammatory Diseases , Immunomodulating Agents , Lipopolysaccharides , Inflammation
17.
Brain ; 146(5): 1821-1830, 2023 05 02.
Article in English | MEDLINE | ID: mdl-36907221

ABSTRACT

Therapeutics to reduce intracranial pressure are an unmet need. Preclinical data have demonstrated a novel strategy to lower intracranial pressure using glucagon-like peptide-1 (GLP-1) receptor signalling. Here, we translate these findings into patients by conducting a randomized, placebo-controlled, double-blind trial to assess the effect of exenatide, a GLP-1 receptor agonist, on intracranial pressure in idiopathic intracranial hypertension. Telemetric intracranial pressure catheters enabled long-term intracranial pressure monitoring. The trial enrolled adult women with active idiopathic intracranial hypertension (intracranial pressure >25 cmCSF and papilloedema) who receive subcutaneous exenatide or placebo. The three primary outcome measures were intracranial pressure at 2.5 h, 24 h and 12 weeks and alpha set a priori at less than 0.1. Among the 16 women recruited, 15 completed the study (mean age 28 ± 9, body mass index 38.1 ± 6.2 kg/m2, intracranial pressure 30.6 ± 5.1 cmCSF). Exenatide significantly and meaningfully lowered intracranial pressure at 2.5 h -5.7 ± 2.9 cmCSF (P = 0.048); 24 h -6.4 ± 2.9 cmCSF (P = 0.030); and 12 weeks -5.6 ± 3.0 cmCSF (P = 0.058). No serious safety signals were noted. These data provide confidence to proceed to a phase 3 trial in idiopathic intracranial hypertension and highlight the potential to utilize GLP-1 receptor agonist in other conditions characterized by raised intracranial pressure.


Subject(s)
Diabetes Mellitus, Type 2 , Pseudotumor Cerebri , Adult , Humans , Female , Young Adult , Exenatide , Pseudotumor Cerebri/drug therapy , Glucagon-Like Peptide-1 Receptor/agonists , Glucagon-Like Peptide-1 Receptor/therapeutic use , Peptides , Venoms/therapeutic use , Hypoglycemic Agents/therapeutic use , Diabetes Mellitus, Type 2/drug therapy
18.
Int J Mol Sci ; 24(5)2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36902115

ABSTRACT

To determine the efficacy of PT320 on L-DOPA-induced dyskinetic behaviors, and neurochemistry in a progressive Parkinson's disease (PD) MitoPark mouse model. To investigate the effects of PT320 on the manifestation of dyskinesia in L-DOPA-primed mice, a clinically translatable biweekly PT320 dose was administered starting at either 5 or 17-weeks-old mice. The early treatment group was given L-DOPA starting at 20 weeks of age and longitudinally evaluated up to 22 weeks. The late treatment group was given L-DOPA starting at 28 weeks of age and longitudinally observed up to 29 weeks. To explore dopaminergic transmission, fast scan cyclic voltammetry (FSCV) was utilized to measure presynaptic dopamine (DA) dynamics in striatal slices following drug treatments. Early administration of PT320 significantly mitigated the severity L-DOPA-induced abnormal involuntary movements; PT320 particularly improved excessive numbers of standing as well as abnormal paw movements, while it did not affect L-DOPA-induced locomotor hyperactivity. In contrast, late administration of PT320 did not attenuate any L-DOPA-induced dyskinesia measurements. Moreover, early treatment with PT320 was shown to not only increase tonic and phasic release of DA in striatal slices in L-DOPA-naïve MitoPark mice, but also in L-DOPA-primed animals. Early treatment with PT320 ameliorated L-DOPA-induced dyskinesia in MitoPark mice, which may be related to the progressive level of DA denervation in PD.


Subject(s)
Antiparkinson Agents , Dyskinesia, Drug-Induced , Glucagon-Like Peptide-1 Receptor , Levodopa , Parkinson Disease , Animals , Mice , Antiparkinson Agents/adverse effects , Antiparkinson Agents/therapeutic use , Delayed-Action Preparations/therapeutic use , Disease Models, Animal , Dopamine/adverse effects , Dopamine/therapeutic use , Dyskinesia, Drug-Induced/drug therapy , Glucagon-Like Peptide-1 Receptor/agonists , Levodopa/adverse effects , Levodopa/therapeutic use , Oxidopamine , Parkinson Disease/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...