Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Biol ; 31(14): 3017-3027.e7, 2021 07 26.
Article in English | MEDLINE | ID: mdl-34019823

ABSTRACT

Cadherins are essential adhesion proteins that regulate tissue cohesion and paracellular permeability by assembling dense adhesion plaques at cell-to-cell contacts. Adherens junctions are central to a wide range of tissue functions; identifying protein interactions that potentiate their assembly and regulation has been the focus of research for over 2 decades. Here, we present evidence for a new, unexpected mechanism of cadherin oligomerization on cells. Fully quantified spectral imaging fluorescence resonance energy transfer (FSI-FRET) and fluorescence intensity fluctuation (FIF) measurements directly demonstrate that E-cadherin forms constitutive lateral (cis) dimers at the plasma membrane. Results further show that binding of the cytosolic protein p120ctn binding to the intracellular region is required for constitutive E-cadherin dimerization. This finding differs from a model that attributes lateral (cis) cadherin oligomerization solely to extracellular domain interactions. The present, novel findings are further supported by studies of E-cadherin mutants that uncouple p120ctn binding or with cells in which p120ctn was knocked out using CRISPR-Cas9. Quantitative affinity measurements further demonstrate that uncoupling p120ctn binding reduces the cadherin trans binding affinity and cell adhesion. These findings transform the current model of cadherin assembly at cell surfaces and identify the core building blocks of cadherin-mediated intercellular adhesions. They also identify a new role for p120ctn and reconcile findings that implicate both the extracellular and intracellular cadherin domains in cadherin clustering and intercellular cohesion.


Subject(s)
Cadherins , Catenins , Cadherins/genetics , Cadherins/metabolism , Catenins/genetics , Catenins/metabolism , Cell Adhesion/physiology , Cell Membrane/metabolism , Dimerization , Phosphoproteins/metabolism , Protein Binding , Delta Catenin
2.
J Geophys Res Biogeosci ; 126(4): 1-21, 2021 Mar.
Article in English | MEDLINE | ID: mdl-37089664

ABSTRACT

Published reports suggest efforts designed to prevent the occurrence of harmful algal blooms and hypoxia by reducing non-point and point source phosphorus (P) pollution are not delivering water quality improvements in many areas. Part of the uncertainty in evaluating watershed responses to management practices is the lack of standardized estimates of phosphorus inputs and outputs. To assess P trends across the conterminous United States, we compiled an inventory using publicly available datasets of agricultural P fluxes, atmospheric P deposition, human P demand and waste, and point source discharges for 2002, 2007, and 2012 at the scale of the 8-digit Hydrologic Unit Code subbasin (~1,800 km2). Estimates of agricultural legacy P surplus accumulated from 1945 to 2001 were also developed. Fertilizer and manure inputs were found to exceed crop removal rates by up to 50% in many agricultural regions. This excess in inputs has led to the continued accumulation of legacy P in agricultural lands. Atmospheric P deposition increased throughout the Rockies, potentially contributing to reported increases in surface water P concentrations in undisturbed watersheds. In some urban areas, P fluxes associated with human waste and non-farm fertilizer use has declined despite population growth, likely due, in part, to various sales bans on P-containing detergents and fertilizers. Although regions and individual subbasins have different contemporary and legacy P sources, a standardized method of accounting for large and small fluxes and ready to use inventory numbers provide essential infromation to coordinate targeted interventions to reduce P concentrations in the nation's waters.

SELECTION OF CITATIONS
SEARCH DETAIL
...