Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Phys Chem Chem Phys ; 26(19): 14160-14170, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38712976

ABSTRACT

Protonated ions of fucose-containing oligosaccharides are prone to undergo internal glycan rearrangement which results in chimeric fragments that obfuscate mass-spectrometric analysis. Lack of accessible tools that would facilitate systematic analysis of glycans in the gas phase limits our understanding of this phenomenon. In this work, we use density functional theory modeling to interpret cryogenic IR spectra of Lewis a and blood group type H1 trisaccharides and to establish whether these trisaccharides undergo the rearrangement during gas-phase analysis. Structurally unconstrained search reveals that none of the parent ions constitute a thermodynamic global minimum. In contrast, predicted collision cross sections and anharmonic IR spectra provide a good match to available experimental data which allowed us to conclude that fucose migration does not occur in these antigens. By comparing the predicted structures with those obtained for Lewis x and blood group type H2 epitopes, we demonstrate that the availability of the mobile proton and a large difference in the relative stability of the parent ions and rearrangement products constitute the prerequisites for the rearrangement reaction.


Subject(s)
Lewis Blood Group Antigens , Lewis Blood Group Antigens/chemistry , Epitopes/chemistry , Thermodynamics , Polysaccharides/chemistry , Density Functional Theory , Blood Group Antigens/chemistry , Spectrophotometry, Infrared , Oligosaccharides/chemistry , Trisaccharides/chemistry
2.
J Phys Chem Lett ; 15(7): 1969-1974, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38346269

ABSTRACT

Infrared photodissociation of weakly bound "mass tags" is widely used to determine the structures of ions by analyzing their vibrational spectra. Molecular hydrogen is a common choice for tagging in cryogenic radio-frequency ion traps. Although the H2 molecules can introduce distortions in the target species, we demonstrate an advantage of H2 tagging in the analysis of positional isomers adopted by the molecular anions derived from decarboxylation of formylbenzoates. Attachment of H2 to the carbanion centers of three such isomers yields distinct shifts in the H2 stretch, which can be used to determine the distribution of isomers in an unknown sample. Electronic structure calculations indicate that the position-dependent shifts are due to different reactivities of the carbanion sites with respect to an intracluster proton-transfer reaction with the H2 molecule. We exploit this spectroscopic method to quantify the surprisingly facile migrations of the anionic center that have been previously reported for phenide rearrangements.

3.
J Phys Chem Lett ; 14(50): 11313-11317, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38064287

ABSTRACT

The notion of (anti)aromaticity is a successful concept in chemistry to explain the structure and stability of polycyclic hydrocarbons. Cyclopentadienyl and fluorenyl cations are among the most studied classical antiaromatic systems. In this work, fluorenyl cations are investigated by high-resolution gas-phase infrared spectroscopy in helium droplets. Bare fluorenyl cations are generated in the gas phase by electrospray ionization. After mass-to-charge selection, ions are captured in ultracold helium nanodroplets and probed by infrared spectroscopy using a widely tunable free-electron laser in the 600-1700 cm-1 range. The highly resolved cryogenic infrared spectra confirm, in combination with DFT computations, that all cations are present in their singlet states.

4.
Phys Chem Chem Phys ; 25(36): 24783-24788, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37671576

ABSTRACT

In past decades, hydrogen bonds involving organic fluorine have been a highly disputed topic. Obtaining clear evidence for the presence of fluorine-specific interactions is generally difficult because of their weak nature. Today, the existence of hydrogen bonds with organic fluorine is widely accepted and supported by numerous studies. However, strong bonds with short H⋯F distances remain scarce and are primarily found in designed model compounds. Using a combination of cryogenic gas-phase infrared spectroscopy and density functional theory, we here analyze a series of conformationally unrestrained fluorinated phenylalanine compounds as protonated species. The results suggest proximal NH+⋯F hydrogen bonds with an exceptionally close H⋯F distance (1.79 Å) in protonated ortho-fluorophenylalanine.

5.
Angew Chem Int Ed Engl ; 62(36): e202305694, 2023 09 04.
Article in English | MEDLINE | ID: mdl-37329506

ABSTRACT

Membrane proteins are challenging to analyze by native mass spectrometry (MS) as their hydrophobic nature typically requires stabilization in detergent micelles that are removed prior to analysis via collisional activation. There is however a practical limit to the amount of energy which can be applied, which often precludes subsequent characterization by top-down MS. To overcome this barrier, we have applied a modified Orbitrap Eclipse Tribrid mass spectrometer coupled to an infrared laser within a high-pressure linear ion trap. We show how tuning the intensity and time of incident photons enables liberation of membrane proteins from detergent micelles. Specifically, we relate the ease of micelle removal to the infrared absorption of detergents in both condensed and gas phases. Top-down MS via infrared multiphoton dissociation (IRMPD), results in good sequence coverage enabling unambiguous identification of membrane proteins and their complexes. By contrasting and comparing the fragmentation patterns of the ammonia channel with two class A GPCRs, we identify successive cleavage of adjacent amino acids within transmembrane domains. Using gas-phase molecular dynamics simulations, we show that areas prone to fragmentation maintain aspects of protein structure at increasing temperatures. Altogether, we propose a rationale to explain why and where in the protein fragment ions are generated.


Subject(s)
Detergents , Micelles , Mass Spectrometry/methods , Membrane Proteins , Receptors, G-Protein-Coupled
6.
J Phys Chem A ; 127(19): 4269-4276, 2023 May 18.
Article in English | MEDLINE | ID: mdl-37133983

ABSTRACT

The oxidation of the amino acid methionine (Met) by hypochlorous acid (HOCl) to yield methionine sulfoxide (MetO) has been implicated in both the interfacial chemistry of tropospheric sea spray aerosols and the destruction of pathogens in the immune system. Here, we investigate the reaction of deprotonated methionine water clusters, Met-·(H2O)n, with HOCl and characterize the resulting products using cryogenic ion vibrational spectroscopy and electronic structure calculations. Capture of the MetO- oxidation product in the gas phase requires the presence of water molecules attached to the reactant anion. Analysis of its vibrational band pattern confirms that the sulfide group of Met- has indeed been oxidized. Additionally, the vibrational spectrum of the anion corresponding to the uptake of HOCl by Met-·(H2O)n indicates that it exists as an "exit-channel" complex in which the Cl- product ion is bound to the COOH group following the formation of the S═O motif.

7.
J Org Chem ; 88(9): 5543-5553, 2023 May 05.
Article in English | MEDLINE | ID: mdl-37092271

ABSTRACT

Ferrier reactions follow a mechanistic pathway whereby Lewis acid activation of a cyclic enol ether facilitates departure of an allylic leaving group to form a glycosyl Ferrier cation. Attack on the Ferrier cation provides a new acetal linkage concurrent with the transposition of the alkene moiety. The idiosyncratic outcomes of Ferrier reactions of seven-membered ring carbohydrate-based oxepines prompted an investigation of its corresponding septanosyl Ferrier cation. Experiments that characterized the ion, including gas-phase cryogenic IR spectroscopy matched with density functional theory-calculated spectra of candidate cation structures, as well as product analysis from solution-phase Ferrier reactions, are reported here. Results from both approaches revealed an inclination of the seven-membered ring cation to contract to five-membered ring structures. Gas-phase IR spectra matched best to calculated spectra of structures in which five-membered dioxolenium formation opened the oxepine ring. In the solution phase, an attack on the ion by water led to an acyclic enal that cyclized to a C-methylene-aldehydo arabinofuranoside species. Attack by allyl trimethylsilane, on the other hand, was diastereoselective and yielded a C-allyl septanoside.

8.
Chem Sci ; 14(10): 2518-2527, 2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36908944

ABSTRACT

Fatty acids are an abundant class of lipids that are characterised by wide structural variation including isomeric diversity arising from the position and configuration of functional groups. Traditional approaches to fatty acid characterisation have combined chromatography and mass spectrometry for a description of the composition of individual fatty acids while infrared (IR) spectroscopy has provided insights into the functional groups and bond configurations at the bulk level. Here we exploit universal 3-pyridylcarbinol ester derivatization of fatty acids to acquire IR spectra of individual lipids as mass-selected gas-phase ions. Intramolecular interactions between the protonated pyridine moiety and carbon-carbon double bonds present highly sensitive probes for regiochemistry and configuration through promotion of strong and predictable shifts in IR resonances. Gas-phase IR spectra obtained from unsaturated fatty acids are shown to discriminate between isomers and enable the first unambiguous structural assignment of 6Z-octadecenoic acid in human-derived cell lines. Compatibility of 3-pyridylcarbinol ester derivatization with conventional chromatography-mass spectrometry and now gas-phase IR spectroscopy paves the way for comprehensive structure elucidation of fatty acids that is sensitive to regio- and stereochemical variations and with the potential to uncover new pathways in lipid metabolism.

9.
Angew Chem Int Ed Engl ; 62(24): e202302883, 2023 06 12.
Article in English | MEDLINE | ID: mdl-36939315

ABSTRACT

Fucose is a signaling carbohydrate that is attached at the end of glycan processing. It is involved in a range of processes, such as the selectin-dependent leukocyte adhesion or pathogen-receptor interactions. Mass-spectrometric techniques, which are commonly used to determine the structure of glycans, frequently show fucose-containing chimeric fragments that obfuscate the analysis. The rearrangement leading to these fragments-often referred to as fucose migration-has been known for more than 25 years, but the chemical identity of the rearrangement product remains unclear. In this work, we combine ion-mobility spectrometry, radical-directed dissociation mass spectrometry, cryogenic IR spectroscopy of ions, and density-functional theory calculations to deduce the product of the rearrangement in the model trisaccharides Lewis x and blood group H2. The structural search yields the fucose moiety attached to the galactose with an α(1→6) glycosidic bond as the most likely product.


Subject(s)
Blood Group Antigens , Fucose , Fucose/chemistry , Carbohydrate Sequence , Epitopes/chemistry , Mass Spectrometry , Polysaccharides/chemistry
10.
Angew Chem Weinheim Bergstr Ger ; 135(36): e202305694, 2023 Sep 04.
Article in English | MEDLINE | ID: mdl-38516403

ABSTRACT

Membrane proteins are challenging to analyze by native mass spectrometry (MS) as their hydrophobic nature typically requires stabilization in detergent micelles that are removed prior to analysis via collisional activation. There is however a practical limit to the amount of energy which can be applied, which often precludes subsequent characterization by top-down MS. To overcome this barrier, we have applied a modified Orbitrap Eclipse Tribrid mass spectrometer coupled to an infrared laser within a high-pressure linear ion trap. We show how tuning the intensity and time of incident photons enables liberation of membrane proteins from detergent micelles. Specifically, we relate the ease of micelle removal to the infrared absorption of detergents in both condensed and gas phases. Top-down MS via infrared multiphoton dissociation (IRMPD), results in good sequence coverage enabling unambiguous identification of membrane proteins and their complexes. By contrasting and comparing the fragmentation patterns of the ammonia channel with two class A GPCRs, we identify successive cleavage of adjacent amino acids within transmembrane domains. Using gas-phase molecular dynamics simulations, we show that areas prone to fragmentation maintain aspects of protein structure at increasing temperatures. Altogether, we propose a rationale to explain why and where in the protein fragment ions are generated.

11.
J Chem Phys ; 157(13): 131102, 2022 Oct 07.
Article in English | MEDLINE | ID: mdl-36209005

ABSTRACT

4-aminobenzoic acid (4ABA) is a model scaffold for studying solvent-mediated proton transfer. Although protonation at the carboxylic group (O-protomer) is energetically favored in the gas phase, the N-protomer, where the proton remains on the amino group, can be kinetically trapped by electrospray ionization of 4ABA in an aprotic solvent such as acetonitrile. Here, we report the formation of the hydrated deuterium isotopologues of the N-protomers, RND3 +·(H2O)n=1-3, (R = C6H4COOD), which are generated by condensing water molecules onto the bare N-protomers in a liquid nitrogen cooled, radiofrequency octopole ion trap at 80 K. The product clusters are then transferred to a 20 K cryogenic ion trap where they are tagged with weakly bound D2 molecules. The structures of these clusters are determined by analysis of their vibrational patterns, obtained by resonant IR photodissociation. The resulting patterns confirm that the metastable N-protomer configuration remains intact even when warmed by the sequential condensation of water molecules. The attachment of H2O molecules onto the RND3 + head group also affords the opportunity to explore the possibility of H/D exchange between the acid scaffold and the proximal water network. The spectroscopic results establish that although the RND3 +·(H2O)n=1,2 clusters are formed without H/D exchange, the n = 3 cluster exhibits about 10% H/D exchange as evidenced by the appearance of the telltale HOD bands. The site of exchange on the acid is determined to be the acidic OH group by the emergence of the OH stretching fundamental in the -COOH motif.


Subject(s)
4-Aminobenzoic Acid , Protons , 4-Aminobenzoic Acid/chemistry , Acetonitriles , Deuterium , Nitrogen , Protein Subunits , Solvents/chemistry , Water/chemistry
12.
J Am Chem Soc ; 144(44): 20258-20266, 2022 11 09.
Article in English | MEDLINE | ID: mdl-36289569

ABSTRACT

The stereoselective formation of 1,2-cis-glycosidic bonds is a major bottleneck in the synthesis of carbohydrates. We here investigate how the electron density in acyl protecting groups influences the stereoselectivity by fine-tuning the efficiency of remote participation. Electron-rich C4-pivaloylated galactose building blocks show an unprecedented α-selectivity. The trifluoroacetylated counterpart with electron-withdrawing groups, on the other hand, exhibits a lower selectivity. Cryogenic infrared spectroscopy in helium nanodroplets and density functional theory calculations revealed the existence of dioxolenium-type intermediates for this reaction, which suggests that remote participation of the pivaloyl protecting group is the origin of the high α-selectivity of the pivaloylated building blocks. According to these findings, an α-selective galactose building block for glycosynthesis is developed based on rational considerations and is subsequently employed in automated glycan assembly exhibiting complete stereoselectivity. Based on the obtained selectivities in the glycosylation reactions and the results from infrared spectroscopy and density functional theory, we suggest a mechanism by which these reactions could proceed.


Subject(s)
Electrons , Galactose , Galactose/chemistry , Stereoisomerism , Glycosylation , Carbohydrates
13.
J Am Soc Mass Spectrom ; 33(10): 1914-1920, 2022 Oct 05.
Article in English | MEDLINE | ID: mdl-36084146

ABSTRACT

Decarboxylation of carboxylate ions in the gas phase provides a useful window into the chemistry displayed by these reactive carbanion intermediates. Here, we explore the species generated by decarboxylation of two benzoate derivatives: 2-formylbenzoate (2FBA) and 2-benzoylbenzoate (2BBA). The nascent product anions are transferred to a cryogenic ion trap where they are cooled to ∼15 K and analyzed by their pattern of vibrational bands obtained with IR photodissociation spectroscopy of weakly bound H2 molecules. The structures of the quenched species are then determined by comparison of these spectra with those predicted by electronic structure calculations for local minima on the potential energy surface. The 2-phenide carbanion generated by decarboxylation of 2FBA occurs in two isomeric forms that differ in the orientation of the formyl group, both of which yield a very large (∼110 cm-1) redshift in the stretching frequency of the H2 molecule attached to the anionic carbon center. Although calculated to be a local minimum, the analogous 2-phenide species could not be isolated upon decarboxylation of 2BBA. Rather, the anionic product adopts a ring-closed structure, indicating efficient nucleophilic attack on the pendant phenyl group by the nascent phenide. The barrier for ring closing is evaluated with electronic structure calculations.

14.
European J Org Chem ; 2022(15): e202200255, 2022 Apr 21.
Article in English | MEDLINE | ID: mdl-35915640

ABSTRACT

Fluorination is a potent method to modulate chemical properties of glycans. Here, we study how C3- and C6-fluorination of glucosyl building blocks influence the structure of the intermediate of the glycosylation reaction, the glycosyl cation. Using a combination of gas-phase infrared spectroscopy and first-principles theory, glycosyl cations generated from fluorinated and non-fluorinated monosaccharides are structurally characterized. The results indicate that neighboring group participation of the C2-benzoyl protecting group is the dominant structural motif for all building blocks, correlating with the ß-selectivity observed in glycosylation reactions. The infrared signatures indicate that participation of the benzoyl group in enhanced by resonance effects. Participation of remote acyl groups such as Fmoc or benzyl on the other hand is unfavored. The introduction of the less bulky fluorine leads to a change in the conformation of the ring pucker, whereas the structure of the active dioxolenium site remains unchanged.

15.
Angew Chem Int Ed Engl ; 61(19): e202115481, 2022 05 02.
Article in English | MEDLINE | ID: mdl-35231141

ABSTRACT

Over the course of the COVID-19 pandemic, mRNA-based vaccines have gained tremendous importance. The development and analysis of modified RNA molecules benefit from advanced mass spectrometry and require sufficient understanding of fragmentation processes. Analogous to the degradation of RNA in solution by autohydrolysis, backbone cleavage of RNA strands was equally observed in the gas phase; however, the fragmentation mechanism remained elusive. In this work, autohydrolysis-like intermediates were generated from isolated RNA dinucleotides in the gas phase and investigated using cryogenic infrared spectroscopy in helium nanodroplets. Data from both experiment and density functional theory provide evidence for the formation of a five-membered cyclic phosphate intermediate and rule out linear or six-membered structures. Furthermore, the experiments show that another prominent condensed-phase reaction of RNA nucleotides can be induced in the gas phase: the tautomerization of cytosine. Both observed reactions are therefore highly universal and intrinsic properties of the investigated molecules.


Subject(s)
COVID-19 , RNA , Humans , Nucleotides/chemistry , Pandemics , Spectrophotometry, Infrared/methods
16.
Anal Bioanal Chem ; 414(18): 5275-5285, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35147717

ABSTRACT

Tandem mass spectrometry is arguably the most important analytical tool for structure elucidation of lipids and other metabolites. By fragmenting intact lipid ions, valuable structural information such as the lipid class and fatty acyl composition are readily obtainable. The information content of a fragment spectrum can often be increased by the addition of metal cations. In particular, the use of silver ions is deeply rooted in the history of lipidomics due to their propensity to coordinate both electron-rich heteroatoms and C = C bonds in aliphatic chains. Not surprisingly, coordination of silver ions was found to enable the distinction of sn-isomers in glycerolipids by inducing reproducible intensity differences in the fragment spectra, which could, however, not be rationalized. Here, we investigate the fragmentation behaviors of silver-adducted sn- and double bond glycerophospholipid isomers by probing fragment structures using cryogenic gas-phase infrared (IR) spectroscopy. Our results confirm that neutral headgroup loss from silver-adducted glycerophospholipids leads to dioxolane-type fragments generated by intramolecular cyclization. By combining high-resolution IR spectroscopy and computational modelling of silver-adducted fragments, we offer qualitative explanations for different fragmentation behaviors of glycerophospholipid isomers. Overall, the results demonstrate that gas-phase IR spectroscopy of fragment ions can significantly contribute to our understanding of lipid dissociation mechanisms and the influence of coordinating cations.


Subject(s)
Phospholipids , Silver , Cations , Glycerophospholipids/chemistry , Phospholipids/chemistry , Spectrophotometry, Infrared
17.
Chem Rev ; 122(8): 7840-7908, 2022 04 27.
Article in English | MEDLINE | ID: mdl-34491038

ABSTRACT

Cells encode information in the sequence of biopolymers, such as nucleic acids, proteins, and glycans. Although glycans are essential to all living organisms, surprisingly little is known about the "sugar code" and the biological roles of these molecules. The reason glycobiology lags behind its counterparts dealing with nucleic acids and proteins lies in the complexity of carbohydrate structures, which renders their analysis extremely challenging. Building blocks that may differ only in the configuration of a single stereocenter, combined with the vast possibilities to connect monosaccharide units, lead to an immense variety of isomers, which poses a formidable challenge to conventional mass spectrometry. In recent years, however, a combination of innovative ion activation methods, commercialization of ion mobility-mass spectrometry, progress in gas-phase ion spectroscopy, and advances in computational chemistry have led to a revolution in mass spectrometry-based glycan analysis. The present review focuses on the above techniques that expanded the traditional glycomics toolkit and provided spectacular insight into the structure of these fascinating biomolecules. To emphasize the specific challenges associated with them, major classes of mammalian glycans are discussed in separate sections. By doing so, we aim to put the spotlight on the most important element of glycobiology: the glycans themselves.


Subject(s)
Nucleic Acids , Sugars , Carbohydrates , Glycomics/methods , Mass Spectrometry/methods , Polysaccharides/chemistry
18.
Curr Opin Struct Biol ; 72: 194-202, 2022 02.
Article in English | MEDLINE | ID: mdl-34952241

ABSTRACT

Glycans are intrinsically complex biomolecules that pose particular analytical challenges. Standard workflows for glycan analysis are based on mass spectrometry, often coupled with separation techniques such as liquid chromatography and ion mobility spectrometry. However, this approach does not yield direct structural information and cannot always distinguish between isomers. This gap might be filled in the future by gas-phase infrared spectroscopy, which has emerged as a promising structure-sensitive technique for glycan fingerprinting. This review highlights recent applications of gas-phase infrared spectroscopy for the analysis of synthetic and biological glycans and how they can be integrated into mass spectrometry-based workflows.


Subject(s)
Ion Mobility Spectrometry , Polysaccharides , Glycoconjugates , Ion Mobility Spectrometry/methods , Mass Spectrometry/methods , Polysaccharides/chemistry , Spectrophotometry, Infrared/methods
19.
Anal Sci Adv ; 3(9-10): 258-261, 2022 Oct.
Article in English | MEDLINE | ID: mdl-38716265
20.
J Am Chem Soc ; 143(36): 14827-14834, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34473927

ABSTRACT

Mass spectrometry is routinely employed for structure elucidation of molecules. Structural information can be retrieved from intact molecular ions by fragmentation; however, the interpretation of fragment spectra is often hampered by poor understanding of the underlying dissociation mechanisms. For example, neutral headgroup loss from protonated glycerolipids has been postulated to proceed via an intramolecular ring closure but the mechanism and resulting ring size have never been experimentally confirmed. Here we use cryogenic gas-phase infrared (IR) spectroscopy in combination with computational chemistry to unravel the structures of fragment ions and thereby shed light on elusive dissociation mechanisms. Using the example of glycerolipid fragmentation, we study the formation of protonated five-membered dioxolane and six-membered dioxane rings and show that dioxolane rings are predominant throughout different glycerolipid classes and fragmentation channels. For comparison, pure dioxolane and dioxane ions were generated from tailor-made dehydroxyl derivatives inspired by natural 1,2- and 1,3-diacylglycerols and subsequently interrogated using IR spectroscopy. Furthermore, the cyclic structure of an intermediate fragment occurring in the phosphatidylcholine fragmentation pathway was spectroscopically confirmed. Overall, the results contribute substantially to the understanding of glycerolipid fragmentation and showcase the value of vibrational ion spectroscopy to mechanistically elucidate crucial fragmentation pathways in lipidomics.


Subject(s)
Diglycerides/chemistry , Phosphatidylcholines/chemistry , Phosphatidylethanolamines/chemistry , Lipidomics/methods , Spectrophotometry, Infrared/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...