Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Micron ; 50: 68-74, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23777855

ABSTRACT

While cancer is one of the greatest challenges to public health care, prostate cancer was chosen as cancer model to develop a more accurate imaging assessment than those currently available. Indeed, an efficient imaging technique which considerably improves the sensitivity and specificity of the diagnostic and predicting the cancer behavior would be extremely valuable. The concept of optoacoustic imaging using home-made functionalized gold nanoparticles coupled to an antibody targeting PSMA (prostate specific membrane antigen) was evaluated on different cancer cell lines to demonstrate the specificity of the designed platform. Two commonly used microscopy techniques (indirect fluorescence and scanning electron microscopy) showed their straightforwardness and versatility for the nanoparticle binding investigations regardless the composition of the investigated nanoobjects. Moreover most of the research laboratories and centers are equipped with fluorescence microscopes, so indirect fluorescence using Quantum dots can be used for any active targeting nanocarriers (polymers, ceramics, metals, etc.). The second technique based on backscattered electron is not only limited to gold nanoparticles but also suits for any study of metallic nanoparticles as the electronic density difference between the nanoparticles and binding surface stays high enough. Optoacoustic imaging was finally performed on a 3D cellular model to assess and prove the concept of the developed platform.


Subject(s)
Antibodies , Antigens, Surface/analysis , Glutamate Carboxypeptidase II/analysis , Gold , Microscopy/methods , Nanotubes , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/pathology , Humans , Male
2.
Rapid Commun Mass Spectrom ; 17(16): 1847-54, 2003.
Article in English | MEDLINE | ID: mdl-12876684

ABSTRACT

This work describes a method to use relative fragmentation yields to characterize the internal energy distribution of ions produced by matrix-enhanced laser desorption/ionization mass spectrometry (MELDI-MS, see: Wright LG, Cooks RG, Wood KL. Biomed. Mass Spectrom. 1985; 12: 153-162). Assuming that the fragmentation proceeds statistically and that the collisions in the source lead to a Boltzmann-like distribution of the internal energy, a characteristic parameter, the effective temperature, is introduced to describe the internal energy distribution of the ions observed. The hypotheses, advantages and drawbacks of the implementation of the method that uses substituted benzylpyridinium salts as thermometer ions are discussed. Use is made of two matrices that produce no matrix cations in MELDI and are suitable for small cationic salts. The actual value of this effective temperature significantly depends on an accurate determination of the threshold dissociation energies and on the time spent in the source, in addition to the statistical hypothesis itself. The method could be applied to normalize spectra in order to compare results issued from different instruments.


Subject(s)
Ions/analysis , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Pyridinium Compounds/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/instrumentation , Temperature , Thermometers
SELECTION OF CITATIONS
SEARCH DETAIL
...