Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 132
Filter
1.
Dentomaxillofac Radiol ; 53(1): 74-85, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38214941

ABSTRACT

MRI is a noninvasive, ionizing radiation-free imaging modality that has become an indispensable medical diagnostic method. The literature suggests MRI as a potential diagnostic modality in dentomaxillofacial radiology. However, current MRI equipment is designed for medical imaging (eg, brain and body imaging), with general-purpose use in radiology. Hence, it appears expensive for dentists to purchase and maintain, besides being complex to operate. In recent years, MRI has entered some areas of dentistry and has reached a point in which it can be provided following a tailored approach. This technical report introduces a dental-dedicated MRI (ddMRI) system, describing how MRI can be adapted to fit dentomaxillofacial radiology through the appropriate choice of field strength, dental radiofrequency surface coil, and pulse sequences. Also, this technical report illustrates the possible application and feasibility of the suggested ddMRI system in some relevant diagnostic tasks in dentistry. Based on the presented cases, it is fair to consider the suggested ddMRI system as a feasible approach to introducing MRI to dentists and dentomaxillofacial radiology specialists. Further studies are needed to clarify the diagnostic accuracy of ddMRI considering the various diagnostic tasks relevant to the practice of dentistry.


Subject(s)
Magnetic Resonance Imaging , Radiology , Humans , Feasibility Studies , Magnetic Resonance Imaging/methods , Radiography
2.
Eur J Radiol ; 170: 111247, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38071909

ABSTRACT

PURPOSE: To compare agreement of different evaluation methods of magnetic resonance (MR) 4D flow-derived diastolic transmitral and myocardial peak velocities as well as their ratios, using echocardiography as reference. METHODS: In this prospective study, 60 subjects without symptoms of cardiovascular disease underwent echocardiography and non-contrast 3 T MR 4D flow imaging of the heart. Early- (E) and late-diastolic (A) transmitral peak filling velocities were evaluated from 4D flow data using three different strategies: 1) at the mitral valve tips in short-axis orientation (SA-method), 2) between the mitral valve tips in 4-chamber orientation (4-chamber-method), and 3) as maximal velocities in the transmitral inflow volume (max-velocity-method). Septal, lateral and average early-diastolic myocardial peak velocities (e') were derived from the myocardial tissue in the vicinity of the mitral valve. 4D flow parameters were compared with echocardiography by correlation and Bland-Altman analysis. RESULTS: All 4D flow-derived E, A and E/A values correlated with echocardiography (r = 0.65-0.73, 0.75-0.83 and 0.74-0.86, respectively). While the SA- and 4-chamber-methods substantially underestimated E and A compared to echocardiography (p < 0.001), the max-velocity-method provided E (p = 0.13) and E/A (p = 0.07) without significant bias. Septal, lateral and average e' from 4D flow as well as the max-velocity-method-derived E/e' correlated with echocardiographic measurements (r = 0.64-0.81) and showed no significant bias (p = 0.26-0.54). CONCLUSION: MR 4D flow imaging allows precise and accurate evaluation of transmitral and myocardial peak velocities for characterization of LV diastolic function without significant bias to echocardiography, when transmitral velocities are assessed from the transmitral inflow volume. This enables the use of validated echocardiography threshold values.


Subject(s)
Echocardiography , Myocardium , Humans , Prospective Studies , Mitral Valve/diagnostic imaging , Magnetic Resonance Imaging , Blood Flow Velocity , Diastole
4.
Eur J Radiol ; 141: 109756, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34023727

ABSTRACT

PURPOSE: To analyze differences in systolic and diastolic left ventricular (LV) as well as left atrial (LA) function parameters obtained from identical cardiac magnetic resonance (MR) imaging techniques during inspiratory breath-holding and breathing (breath-hold to breathing differences). METHOD: 56 subjects without signs of heart failure (23/33 male/female, age 58 ±â€¯14 years) underwent 3 T MR cine real-time and transmitral phase contrast imaging with the same spatial and temporal resolution during inspiratory breath-holding and free breathing. LV and LA volumetric function parameters were derived from segmentation of cine series, transmitral peak velocities and early-diastolic myocardial peak velocity from phase contrast series. Corresponding breath-hold and breathing parameters were compared by Bland-Altman analysis; repeatability of breath-hold and breathing measurements was quantified by variance component analysis. p < 0.05 was regarded as statistically significant. RESULTS: Mean differences between results obtained during inspiratory breath-holding vs. breathing were significant for LV volumetric function (end-diastolic volume=-7 mL, p = 0.002; end-systolic volume=-7 mL, p < 0.001; ejection fraction = 3 %, p < 0.001; peak ejection rate = 22 mL/s, p = 0.002; early-diastolic peak filling rate=-34 mL/s, p = 0.025), LA volumetric function (maximum volume=-6 mL, p < 0.001; total ejection fraction=-4%, p < 0.001; active ejection fraction=-2%, p = 0.013; before contraction ejection fraction=-4%, p < 0.001) and early-diastolic velocities (transmitral=-6 cm/s, p < 0.001; tissue velocity=-1.8 cm/s, p < 0.001). Standard deviations of breath-hold-to-breathing differences exceeded the corresponding repeatabilities of breath-hold and breathing measurements. CONCLUSIONS: Systolic and diastolic LV and LA function parameters acquired during inspiratory breath-holding and breathing differ, and large inter-individual breath-hold-to-breathing variations are possible. Thus, the breathing state should be taken into account, especially when comparing results in patient follow-up acquired in different respiratory states.


Subject(s)
Atrial Function, Left , Magnetic Resonance Imaging, Cine , Adult , Aged , Female , Heart Ventricles/diagnostic imaging , Humans , Image Interpretation, Computer-Assisted , Male , Middle Aged , Reproducibility of Results , Stroke Volume , Ventricular Function, Left
5.
J Cardiovasc Magn Reson ; 23(1): 30, 2021 03 22.
Article in English | MEDLINE | ID: mdl-33745456

ABSTRACT

BACKGROUND: Myocardial strain assessed with cardiovascular magnetic resonance (CMR) feature tracking can detect early left ventricular (LV) myocardial deformation quantitatively in patients with a variety of cardiovascular diseases, but this method has not yet been applied to quantify myocardial strain in patients with atrial fibrillation (AF) and no coexistent cardiovascular disease, i.e., the early stage of AF. This study sought to compare LV myocardial strain and T1 mapping indices in AF patients and healthy subjects, and to investigate the associations of a portfolio of inflammation, cardiac remodeling and fibrosis biomarkers with LV myocardial strain and T1 mapping indices in AF patients with no coexistent cardiovascular disease. METHODS: The study consisted of 80 patients with paroxysmal AF patients and no coexistent cardiovascular disease and 20 age- and sex-matched healthy controls. Left atrial volume (LAV), LV myocardial strain and native T1 were assessed with CMR, and compared between the AF patients and healthy subjects. Biomarkers of C-reactive protein (CRP), transforming growth factor beta-1 (TGF-ß1), collagen III N-terminal propeptide (PIIINP), and soluble suppression of tumorigenicity 2 (sST2) were obtained with blood tests, and compared between the AF patients and healthy controls. Associations of these biomarkers with those CMR-measured parameters were analyzed for the AF patients. RESULTS: For the CMR-measured parameters, the AF patients showed significantly larger LAV and LV end-systolic volume, and higher native T1 than the healthy controls (max P = 0.027). The absolute values of the LV peak systolic circumferential strain and its rate as well as the LV diastolic circumferential strain rate were all significantly reduced in the AF patients (all P < 0.001). For the biomarkers, the AF patients showed significantly larger CRP (an inflammation biomarker) and sST2 (a myocardium stiffness biomarker) than the controls (max P = 0.007). In the AF patients, the five CMR-measured parameters of LAV, three LV strain indices and native T1 were all significantly associated with these two biomarkers of CRP and sST2 (max P = 0.020). CONCLUSIONS: In patients with paroxysmal AF and no coexistent cardiovascular disease, LAV enlargement and LV myocardium abnormalities were detected by CMR, and these abnormalities were associated with biomarkers that reflect inflammation and myocardial stiffness.


Subject(s)
Atrial Fibrillation/diagnostic imaging , Atrial Function, Left , C-Reactive Protein/analysis , Inflammation Mediators/blood , Interleukin-1 Receptor-Like 1 Protein/blood , Magnetic Resonance Imaging, Cine , Ventricular Dysfunction, Left/diagnostic imaging , Ventricular Function, Left , Adult , Aged , Atrial Fibrillation/blood , Atrial Fibrillation/physiopathology , Atrial Remodeling , Biomarkers/blood , Case-Control Studies , Female , Fibrosis , Humans , Male , Middle Aged , Predictive Value of Tests , Prospective Studies , Ventricular Dysfunction, Left/blood , Ventricular Dysfunction, Left/physiopathology , Ventricular Remodeling
6.
Acta Radiol ; 62(3): 334-340, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32475124

ABSTRACT

BACKGROUND: T1 mapping is emerging as a powerful tool in cardiac magnetic resonance (CMR) to evaluate diffuse fibrosis. However, right ventricular (RV) T1 mapping proves difficult due to the limited wall thickness in diastolic phase. Several studies focused on systolic T1 mapping, albeit only on the left ventricle (LV). PURPOSE: To estimate intra- and inter-observer variability of native T1 (nT1) mapping of the RV, and its correlations with biventricular and pulmonary function in patients with congenital heart disease (CHD). MATERIAL AND METHODS: In this retrospective, observational, cross-sectional study we evaluated 36 patients with CHD, having undergone CMR on a 1.5-T scanner. LV and RV functional evaluations were performed. A native modified look-locker inversion recovery short-axis sequence was acquired in the systolic phase. Intra- and inter-reader reproducibility were reported as complement to 100% of the ratio between coefficient of reproducibility and mean. Spearman ρ and Mann-Whitney U-test were used to compare distributions. RESULTS: Intra- and inter-reader reproducibility was 84% and 82%, respectively. Median nT1 was 1022 ms (interquartile range [IQR] 1108-972) for the RV and 947 ms (IQR 986-914) for the LV. Median RV-nT1 was 1016 ms (IQR 1090-1016) in patients with EDVI ≤100 mL/m2 and 1100 ms (IQR 1113-1100) in patients with EDVI >100 mL/m2 (P = 0.049). A significant negative correlation was found between RV ejection fraction and RV-nT1 (ρ = -0.284, P = 0.046). CONCLUSION: Systolic RV-nT1 showed a high reproducibility and a negative correlation with RV ejection fraction, potentially reflecting an adaptation of the RV myocardium to pulmonary valve/conduit (dys)-function.


Subject(s)
Heart Defects, Congenital/diagnostic imaging , Heart Defects, Congenital/physiopathology , Ventricular Function, Left/physiology , Ventricular Function, Right/physiology , Adolescent , Adult , Cross-Sectional Studies , Female , Heart Defects, Congenital/complications , Humans , Magnetic Resonance Imaging , Male , Reproducibility of Results , Retrospective Studies , Stroke Volume/physiology , Systole/physiology , Young Adult
7.
Magn Reson Med ; 85(2): 721-733, 2021 02.
Article in English | MEDLINE | ID: mdl-32754969

ABSTRACT

PURPOSE: 4D flow magnetic resonance imaging (4D-MRI) allows time-resolved visualization of blood flow patterns, quantification of volumes, velocities, and advanced parameters, such as wall shear stress (WSS). As 4D-MRI enters the clinical arena, standardization and awareness of confounders are important. Our aim was to evaluate the equivalence of 4D flow-derived aortic hemodynamics in healthy volunteers using different sequences and field strengths. METHODS: 4D-MRI was acquired in 10 healthy volunteers at 1.5T using three different prototype sequences, at 3T and at 7T (Siemens Healthineers). After evaluation of diagnostic quality in three segments (ascending-, descending aorta, aortic arch), peak velocity, flow volumes, and WSS were investigated. Equivalence limits for comparison of field strengths/sequences were based on the limits of Bland-Altman analyses of the intraobserver variability. RESULTS: Non-diagnostic quality was found in 10/144 segments, 9/10 were obtained at 7T. Apart for the comparison of forward flow between sequence 1 and 3, the differences in measurements between field strengths/sequences exceeded the range of agreement. Significant differences were found between field strengths/sequences for forward flow (1.5T vs. 3T, 3T vs. 7T, sequence 1 vs. 3, 2 vs. 3 [P < .001]), WSS (1.5T vs. 3T [P < .05], sequence 1 vs. 2, 1 vs. 3, 2 vs. 3 [P < .001]), and peak velocity (1.5T vs. 7T, sequence 1 vs. 3 [P > .001]). All parameters at all field strengths/with all sequences correlated moderately to strongly (r ≥ 0.5). CONCLUSION: Data from all sequences could be acquired and resulting images showed sufficient quality for further analysis. However, the variability of the measurements of peak velocity, flow volumes, and WSS was higher when comparing field strengths/sequences as the equivalence limits defined by the intraobserver assessments.


Subject(s)
Aorta , Magnetic Resonance Imaging , Aorta/diagnostic imaging , Blood Flow Velocity , Healthy Volunteers , Hemodynamics , Humans , Imaging, Three-Dimensional
8.
10.
ESC Heart Fail ; 7(5): 2637-2649, 2020 10.
Article in English | MEDLINE | ID: mdl-32686332

ABSTRACT

AIMS: Heart failure with preserved ejection fraction is still a diagnostic and therapeutic challenge, and accurate non-invasive diagnosis of left ventricular (LV) diastolic dysfunction (DD) remains difficult. The current study aimed at identifying the most informative cardiovascular magnetic resonance (CMR) parameters for the assessment of LVDD. METHODS AND RESULTS: We prospectively included 50 patients and classified them into three groups: with DD (DD+, n = 15), without (DD-, n = 26), and uncertain (DD±, n = 9). Diagnosis of DD was based on echocardiographic E/E', invasive LV end-diastolic pressure, and N-terminal pro-brain natriuretic peptide. CMR was performed at 1.5 T to assess LV and left atrial (LA) morphology, LV diastolic strain rate (SR) by tissue tracking and tagging, myocardial peak velocities by tissue phase mapping, and transmitral inflow profile using phase contrast techniques. Statistics were performed only on definitive DD+ and DD- (total number 41). DD+ showed enlarged LA with LA end-diastolic volume/height performing best to identify DD+ with a cut-off value of ≥0.52 mL/cm (sensitivity = 0.71, specificity = 0.84, and area under the receiver operating characteristic curve = 0.75). DD+ showed significantly reduced radial (inferolateral E peak: DD-: -14.5 ± 6.5%/s vs. DD+: -10.9 ± 5.9%/s, P = 0.04; anterolateral A peak: DD-: -4.2 ± 1.6%/s vs. DD+: -3.1 ± 1.4%/s, P = 0.04) and circumferential (inferolateral A peak: DD-: 3.8 ± 1.2%/s vs. DD+: 2.8 ± 0.8%/s, P = 0.007; anterolateral A peak: DD-: 3.5 ± 1.2%/s vs. DD+: 2.5 ± 0.8%/s, P = 0.048) SR in the basal lateral wall assessed by tissue tracking. In the same segments, DD+ showed lower peak myocardial velocity by tissue phase mapping (inferolateral radial peak: DD-: -3.6 ± 0.7 ms vs. DD+: -2.8 ± 1.0 ms, P = 0.017; anterolateral longitudinal peak: DD-: -5.0 ± 1.8 ms vs. DD+: -3.4 ± 1.4 ms, P = 0.006). Tagging revealed reduced global longitudinal SR in DD+ (DD-: 45.8 ± 12.0%/s vs. DD+: 34.8 ± 9.2%/s, P = 0.022). Global circumferential and radial SR by tissue tracking and tagging, LV morphology, and transmitral flow did not differ between DD+ and DD-. CONCLUSIONS: Left atrial size and regional quantitative myocardial deformation applying CMR identified best patients with DD.


Subject(s)
Ventricular Dysfunction, Left , Diastole , Echocardiography , Heart Atria/diagnostic imaging , Humans , Magnetic Resonance Spectroscopy , Ventricular Dysfunction, Left/diagnostic imaging
11.
J Cardiovasc Magn Reson ; 22(1): 31, 2020 05 07.
Article in English | MEDLINE | ID: mdl-32375896

ABSTRACT

BACKGROUND: The T1 Mapping and Extracellular volume (ECV) Standardization (T1MES) program explored T1 mapping quality assurance using a purpose-developed phantom with Food and Drug Administration (FDA) and Conformité Européenne (CE) regulatory clearance. We report T1 measurement repeatability across centers describing sequence, magnet, and vendor performance. METHODS: Phantoms batch-manufactured in August 2015 underwent 2 years of structural imaging, B0 and B1, and "reference" slow T1 testing. Temperature dependency was evaluated by the United States National Institute of Standards and Technology and by the German Physikalisch-Technische Bundesanstalt. Center-specific T1 mapping repeatability (maximum one scan per week to minimum one per quarter year) was assessed over mean 358 (maximum 1161) days on 34 1.5 T and 22 3 T magnets using multiple T1 mapping sequences. Image and temperature data were analyzed semi-automatically. Repeatability of serial T1 was evaluated in terms of coefficient of variation (CoV), and linear mixed models were constructed to study the interplay of some of the known sources of T1 variation. RESULTS: Over 2 years, phantom gel integrity remained intact (no rips/tears), B0 and B1 homogenous, and "reference" T1 stable compared to baseline (% change at 1.5 T, 1.95 ± 1.39%; 3 T, 2.22 ± 1.44%). Per degrees Celsius, 1.5 T, T1 (MOLLI 5s(3s)3s) increased by 11.4 ms in long native blood tubes and decreased by 1.2 ms in short post-contrast myocardium tubes. Agreement of estimated T1 times with "reference" T1 was similar across Siemens and Philips CMR systems at both field strengths (adjusted R2 ranges for both field strengths, 0.99-1.00). Over 1 year, many 1.5 T and 3 T sequences/magnets were repeatable with mean CoVs < 1 and 2% respectively. Repeatability was narrower for 1.5 T over 3 T. Within T1MES repeatability for native T1 was narrow for several sequences, for example, at 1.5 T, Siemens MOLLI 5s(3s)3s prototype number 448B (mean CoV = 0.27%) and Philips modified Look-Locker inversion recovery (MOLLI) 3s(3s)5s (CoV 0.54%), and at 3 T, Philips MOLLI 3b(3s)5b (CoV 0.33%) and Siemens shortened MOLLI (ShMOLLI) prototype 780C (CoV 0.69%). After adjusting for temperature and field strength, it was found that the T1 mapping sequence and scanner software version (both P < 0.001 at 1.5 T and 3 T), and to a lesser extent the scanner model (P = 0.011, 1.5 T only), had the greatest influence on T1 across multiple centers. CONCLUSION: The T1MES CE/FDA approved phantom is a robust quality assurance device. In a multi-center setting, T1 mapping had performance differences between field strengths, sequences, scanner software versions, and manufacturers. However, several specific combinations of field strength, sequence, and scanner are highly repeatable, and thus, have potential to provide standardized assessment of T1 times for clinical use, although temperature correction is required for native T1 tubes at least.


Subject(s)
Magnetic Resonance Imaging/instrumentation , Magnetic Resonance Imaging/standards , Phantoms, Imaging/standards , Consensus , Humans , Observer Variation , Predictive Value of Tests , Reproducibility of Results
12.
BMC Med Imaging ; 19(1): 59, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31370821

ABSTRACT

BACKGROUND: T1 mapping sequences such as MOLLI, ShMOLLI and SASHA make use of different technical approaches, bearing strengths and weaknesses. It is well known that obtained T1 relaxation times differ between the sequence techniques as well as between different hardware. Yet, T1 quantification is a promising tool for myocardial tissue characterization, disregarding the absence of established reference values. The purpose of this study was to evaluate the feasibility of native and post-contrast T1 mapping methods as well as ECV maps and its diagnostic benefits in a clinical environment when scanning patients with various cardiac diseases at 3 T. METHODS: Native and post-contrast T1 mapping data acquired on a 3 T full-body scanner using the three pulse sequences 5(3)3 MOLLI, ShMOLLI and SASHA in 19 patients with clinical indication for contrast enhanced MRI were compared. We analyzed global and segmental T1 relaxation times as well as respective extracellular volumes and compared the emerged differences between the used pulse sequences. RESULTS: T1 times acquired with MOLLI and ShMOLLI exhibited systematic T1 deviation compared to SASHA. Myocardial MOLLI T1 times were 19% lower and ShMOLLI T1 times 25% lower compared to SASHA. Native blood T1 times from MOLLI were 13% lower than SASHA, while post-contrast MOLLI T1-times were only 5% lower. ECV values exhibited comparably biased estimation with MOLLI and ShMOLLI compared to SASHA in good agreement with results reported in literature. Pathology-suspect segments were clearly differentiated from remote myocardium with all three sequences. CONCLUSION: Myocardial T1 mapping yields systematically biased pre- and post-contrast T1 times depending on the applied pulse sequence. Additionally calculating ECV attenuates this bias, making MOLLI, ShMOLLI and SASHA better comparable. Therefore, myocardial T1 mapping is a powerful clinical tool for classification of soft tissue abnormalities in spite of the absence of established reference values.


Subject(s)
Heart Diseases/diagnostic imaging , Magnetic Resonance Imaging, Cine/methods , Radiographic Image Interpretation, Computer-Assisted/methods , Cardiac Volume , Contrast Media , Feasibility Studies , Heart Diseases/physiopathology , Humans , Sensitivity and Specificity
13.
Magn Reson Imaging ; 60: 164-172, 2019 07.
Article in English | MEDLINE | ID: mdl-31075419

ABSTRACT

PURPOSE: After an endovascular aortic aneurysm repair (EVAR), a follow-up at 1, 6 and every 12 months is recommended for remainder of the patient's life. The diagnostic standard methods for diagnosing endoleaks and visualization of aneurysms in EVAR-patients are: invasive digital subtraction angiography (DSA), contrast enhanced (CE) computed tomographic angiography (CE-CTA), and magnetic resonance angiography (CE-MRA). These techniques, however, require the use of iodine- or gadolinium-based contrast agents with rare, but possibly life threatening side effects such as renal impairment, thyrotoxicosis and allergic reactions, nephrogenic systemic fibrosis, and cerebral gadolinium deposition. The aim of this prospective study was to compare a non-contrast-enhanced MRI protocol (consist of four MRI methods) with DSA and CE-CTA for visualization and quantification of endovascular aortic prosthesis, their endoleaks and aneurysms. MATERIAL AND METHODS: Eight patients (mean age 76.8 ±â€¯4.9 years, 63% male), whose thoracic, abdominal, or iliac aneurysms were treated with different endovascular prosthesis and suffered from type I-V endoleaks, were examined on a 1.5 Tesla MR system. Quiescent-interval slice selective MR angiography (QISS-MRA), 4-dimensional (4D)-flow MRI, T1- and T2-mapping, as well as DSA and CE-CTA were used for the visualization and quantification of endoprosthesis, endoleaks, and aneurysms in these patients. RESULTS: QISS-MRA provided good visualization of endoleaks and comparable quantification of aneurysm size with respect to CE-CTA and DSA. The 4D-flow MRI provided additional information about the wall shear stress, which could not be determined using DSA. In contrast to CE-CTA, T1- and T2-mapping provided detailed information about heterogeneous areas within an aneurysm sac. CONCLUSIONS: Compared to DSA and CE-CTA, the proposed MRI methods provide improved anatomical and functional information for various types of endoprostheses and endoleaks. In addition, hemodynamic parameters of the aorta and information on the content of aneurysm sac are provided as well. Within the frame of personalized medicine, the personalized diagnosis enabled by this non-CE MRI protocol is the foundation for a personalized and successful treatment.


Subject(s)
Aneurysm/diagnostic imaging , Angiography, Digital Subtraction , Blood Vessel Prosthesis , Endoleak/diagnostic imaging , Magnetic Resonance Angiography , Aged , Aged, 80 and over , Aorta , Aortic Aneurysm, Abdominal , Contrast Media , Female , Humans , Magnetic Resonance Imaging , Male , Prospective Studies , Prostheses and Implants , Tomography, X-Ray Computed
14.
J Magn Reson Imaging ; 50(4): 1326-1335, 2019 10.
Article in English | MEDLINE | ID: mdl-30892777

ABSTRACT

BACKGROUND: Sympathetic reinnervation after heart transplantation (HTX) is a known phenomenon, which has an impact on patient heart rate variability and exercise capacity. The impact of reinnervation on myocardial structure has not been evaluated yet. PROPOSE: To evaluate the feasibility of simultaneous imaging of cardiac reinnervation and cardiac structure using a hybrid PET/MRI system. STUDY TYPE: Prospective / pilot study. SUBJECTS: Ten patients, 4-21 years after cardiac transplantation. FIELD STRENGTH/SEQUENCE: 3 T hybrid PET/MRI system. Cine SSFP, T1 mapping (modified Look-Locker inversion recovery sequence) pre/postcontrast as well as dynamic [11 C]meta-hydroxyephedrine ([11 C]mHED) PET. ASSESSMENT: All MRI and PET parameters were evaluated by experienced readers using dedicated postprocessing software packages for cardiac MRI and PET. For all parameters a 16-segment model for the left ventricle was applied. STATISTICAL TESTS: Mann-Whitney U-test; Spearman correlations. RESULTS: Thirty-six of 160 myocardial segments showed evidence of reinnervation by PET. On a segment-based analysis, mean native T1 relaxation times were nonsignificantly altered in segments with evidence of reinnervation (1305 ± 151 msec vs. 1270 ± 112 msec; P = 0.1), whereas mean extracellular volume (ECV) was significantly higher in segments with evidence of reinnervation (35.8 ± 11% vs. 30.9 ± 7%; P = 0.019). There were no significant differences in wall motion (WM) and wall thickening (WT) between segments with or without reinnervation (mean WM: 7.6 ± 4 mm vs. group B: 9.3 ± 7 mm [P = 0.13]; WT: 79 ± 63% vs. 94 ± 74% [P = 0.27]) under resting conditions. DATA CONCLUSION: The assessment of cardiac reinnervation using a hybrid PET/MRI system is feasible. Segments with evidence of reinnervation by PET showed nonsignificantly higher T1 relaxation times and a significantly higher ECV, suggesting a higher percentage of diffuse fibrosis in these segments, without impairment of rest WM and WT. LEVEL OF EVIDENCE: 3 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2019;50:1326-1335.


Subject(s)
Heart Transplantation , Heart/innervation , Magnetic Resonance Imaging/methods , Multimodal Imaging/methods , Positron-Emission Tomography/methods , Sympathetic Nervous System/diagnostic imaging , Adult , Feasibility Studies , Female , Heart/diagnostic imaging , Humans , Male , Middle Aged , Pilot Projects , Prospective Studies , Young Adult
15.
Eur Heart J Cardiovasc Imaging ; 20(9): 1004-1011, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-30879055

ABSTRACT

AIMS: Anderson-Fabry disease (AFD) is an X-linked lysosomal storage disorder associated with multi-organ dysfunction. While native myocardial T1 mapping by magnetic resonance (MR) allow non-invasive measurement of myocyte sphingolipid accumulation, 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) and MR are able to identify different pathological patterns of disease progression. We investigated the relationship between T1 mapping and 18F-FDG uptake by hybrid PET-MR cardiac imaging in AFD female patients. METHODS AND RESULTS: Twenty AFD females without cardiac symptoms underwent cardiac PET-MR using 18F-FDG for glucose uptake. In all patients and in seven age- and sex-matched control subjects, T1 mapping was performed using native T1 Modified Look-Locker Inversion-recovery prototype sequences. 18F-FDG myocardial uptake was quantified by measuring the coefficient of variation (COV) of the standardized uptake value using a 17-segment model. T1 values of AFD patients were lower compared with control subjects (1236 ± 49 ms vs. 1334 ± 27 ms, P < 0.0001). Focal 18F-FDG uptake with COV >0.17 was detected in seven patients. COV was 0.32 ± 0.1 in patients with focal 18F-FDG uptake and 0.12 ± 0.04 in those without (P < 0.001). Patients with COV >0.17 had higher T1 values of lateral segments of the mid ventricular wall, compared with those with COV ≤0.17 (1216 ± 22 ms vs. 1160 ± 59 ms, P < 0.05). CONCLUSION: In females with AFD, focal 18F-FDG uptake with a trend towards a pseudo-normalization of abnormal T1 mapping values, may represent an intermediate stage before the development of myocardial fibrosis. These findings suggest a potential relationship between progressive myocyte sphingolipid accumulation and inflammation.


Subject(s)
Cardiovascular Diseases/diagnostic imaging , Fabry Disease/diagnostic imaging , Magnetic Resonance Imaging , Multimodal Imaging , Positron-Emission Tomography , Adult , Cardiovascular Diseases/pathology , Case-Control Studies , Contrast Media , Disease Progression , Fabry Disease/pathology , Female , Fluorodeoxyglucose F18 , Gadolinium DTPA , Humans , Prospective Studies , Radiopharmaceuticals
16.
Magn Reson Med ; 81(6): 3675-3690, 2019 06.
Article in English | MEDLINE | ID: mdl-30803006

ABSTRACT

PURPOSE: To evaluate the accuracy and feasibility of a free-breathing 4D flow technique using compressed sensing (CS), where 4D flow imaging of the thoracic aorta is performed in 2 min with inline image reconstruction on the MRI scanner in less than 5 min. METHODS: The 10 in vitro 4D flow MRI scans were performed with different acceleration rates on a pulsatile flow phantom (9 CS acceleration factors [R = 5.4-14.1], 1 generalized autocalibrating partially parallel acquisition [GRAPPA] R = 2). Based on in vitro results, CS-accelerated 4D flow of the thoracic aorta was acquired in 20 healthy volunteers (38.3 ± 15.2 years old) and 11 patients with aortic disease (61.3 ± 15.1 years) with R = 7.7. A conventional 4D flow scan was acquired with matched spatial coverage and temporal resolution. RESULTS: CS depicted similar hemodynamics to conventional 4D flow in vitro, and in vivo, with >70% reduction in scan time (volunteers: 1:52 ± 0:25 versus 7:25 ± 2:35 min). Net flow values were within 3.5% in healthy volunteers, and voxel-by-voxel comparison demonstrated good agreement. CS significantly underestimated peak velocities (vmax ) and peak flow (Qmax ) in both volunteers and patients (volunteers: vmax , -16.2% to -9.4%, Qmax : -11.6% to -2.9%, patients: vmax , -11.2% to -4.0%; Qmax , -10.2% to -5.8%). CONCLUSION: Aortic 4D flow with CS is feasible in a two minute scan with less than 5 min for inline reconstruction. While net flow agreement was excellent, CS with R = 7.7 produced underestimation of Qmax and vmax ; however, these were generally within 13% of conventional 4D flow-derived values. This approach allows 4D flow to be feasible in clinical practice for comprehensive assessment of hemodynamics.


Subject(s)
Aorta/diagnostic imaging , Imaging, Three-Dimensional/methods , Magnetic Resonance Angiography/methods , Adult , Aorta/physiology , Blood Flow Velocity/physiology , Heart Valve Diseases/diagnostic imaging , Heart Valve Diseases/physiopathology , Humans , Middle Aged , Phantoms, Imaging , Young Adult
17.
Eur Radiol ; 29(7): 3658-3668, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30770973

ABSTRACT

OBJECTIVES: To validate deformable registration algorithms (DRAs) for cine balanced steady-state free precession (bSSFP) assessment of global longitudinal strain (GLS) and global circumferential strain (GCS) using harmonic phase (HARP) cardiovascular magnetic resonance as standard of reference (SoR). METHODS: Seventeen patients and 17 volunteers underwent short axis stack and 2-/4-chamber cine bSSFP imaging with matching slice long-axis and mid-ventricular spatial modulation of magnetization (SPAMM) myocardial tagging. Inverse DRA was applied on bSSFP data for assessment of GLS and GCS while myocardial tagging was processed using HARP. Intra- and inter-observer variability assessment was based on repeated analysis by a single observer and analysis by a second observer, respectively. Standard semi-automated short axis stack segmentation was performed for analysis of left ventricular (LV) volumes and ejection fraction (EF). RESULTS: DRA demonstrated strong relationships to HARP for myocardial GLS (R2 = 0.75; p < 0.0001) and endocardial GLS (R2 = 0.61; p < 0.0001). GCS result comparison also demonstrated significant relationships between DRA and HARP for myocardial strain (R2 = 0.61; p < 0.0001) and endocardial strain (R2 = 0.51; p < 0.0001). Both methods demonstrated small systematic errors for intra- and inter-observer variability but DRA demonstrated consistently lower CV. Global LVEF was significantly lower (p = 0.0099) in patients (53.7%; IQR 43.9/64.0%) than in healthy volunteers (62.6%; IQR 61.1/66.2%). DRA and HARP strain data demonstrated significant relationships to LVEF. CONCLUSIONS: Non-rigid deformation method-based DRA provides a reliable measure of peak systolic GCS and GLS based on cine bSSFP with superior intra- and inter-observer reproducibility compared to HARP. KEY POINT: • Myocardial strain can be reliably analyzed using inverse deformable registration algorithms (DRAs) on cine CMR. • Inverse DRA-derived strain shows higher reproducibility than tagged CMR. • DRA and tagged CMR-based myocardial strain demonstrate strong relationships to global left ventricular function.


Subject(s)
Algorithms , Heart Ventricles/diagnostic imaging , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging, Cine/methods , Myocardial Ischemia/diagnosis , Myocardium/pathology , Ventricular Function, Left/physiology , Adult , Female , Heart Ventricles/physiopathology , Humans , Male , Middle Aged , Myocardial Ischemia/physiopathology , Prospective Studies , Reproducibility of Results
18.
Korean J Radiol ; 20(1): 83-93, 2019 01.
Article in English | MEDLINE | ID: mdl-30627024

ABSTRACT

Objective: The purpose of this study was to prospectively investigate the value of the myocardial extracellular volume fraction (ECV) in predicting myocardial functional outcome after revascularization of coronary chronic total occlusion (CTO). Materials and Methods: Thirty patients with CTO underwent cardiovascular magnetic resonance (CMR) before and 6 months after revascularization. Three baseline markers of functional outcome were evaluated in the dysfunctional segments assigned to the CTO vessels: ECV, transmural extent of infarction (TEI), and unenhanced rim thickness (RIM). At the global level, the ECV values of the whole myocardium with and without a hyperenhanced region (global and remote ECV) were respectively measured. Results: In per-segment analysis, ECV was superior to TEI and RIM in predicting functional recovery (area under receiver operating characteristic curve [AUC]: 0.86 vs. 0.75 and 0.73, all p values < 0.010), and it emerged as the only independent predictor of regional functional outcome (odds ratio [OR] = 0.83, 95% confidence interval [CI]: 0.77-0.89; p < 0.001) independent of collateral circulation. In per-patient analysis, global baseline ECV was indicative of ejection fraction (EF) at the follow-up examination (ß = -0.61, p < 0.001) and changes in EF (ß = -0.57, p = 0.001) in multivariate regression analysis. A patient with global baseline ECV less than 30.0% (AUC, 0.93; sensitivity 94%, specificity 80%) was more likely to demonstrate significant EF improvement (OR: 0.38; 95% CI: 0.17-0.85; p = 0.019). Conclusion: Extracellular volume fraction obtained by CMR may provide incremental value for the prediction of functional recovery both at the segmental and global levels in CTO patients, and may facilitate the identification of patients who can benefit from revascularization.


Subject(s)
Coronary Occlusion/diagnostic imaging , Coronary Occlusion/diagnosis , Coronary Vessels/diagnostic imaging , Heart Ventricles/diagnostic imaging , Magnetic Resonance Imaging, Cine/methods , Aged , Collateral Circulation , Contrast Media , Coronary Occlusion/pathology , Coronary Occlusion/therapy , Coronary Vessels/physiology , Female , Heart Ventricles/physiopathology , Humans , Male , Middle Aged , Myocardial Revascularization , Myocardium/pathology , Odds Ratio , Percutaneous Coronary Intervention/methods , Predictive Value of Tests , Prospective Studies , ROC Curve , Recovery of Function , Sensitivity and Specificity
19.
Acta Radiol ; 60(3): 327-337, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30479136

ABSTRACT

BACKGROUND: 4D-flow magnetic resonance imaging (MRI) is increasingly used. PURPOSE: To validate 4D-flow sequences in phantom and in vivo, comparing volume flow and kinetic energy (KE) head-to-head, with and without respiratory gating. MATERIAL AND METHODS: Achieva dStream (Philips Healthcare) and MAGNETOM Aera (Siemens Healthcare) 1.5-T scanners were used. Phantom validation measured pulsatile, three-dimensional flow with 4D-flow MRI and laser particle imaging velocimetry (PIV) as reference standard. Ten healthy participants underwent three cardiac MRI examinations each, consisting of cine-imaging, 2D-flow (aorta, pulmonary artery), and 2 × 2 accelerated 4D-flow with (Resp+) and without (Resp-) respiratory gating. Examinations were acquired consecutively on both scanners and one examination repeated within two weeks. Volume flow in the great vessels was compared between 2D- and 4D-flow. KE were calculated for all time phases and voxels in the left ventricle. RESULTS: Phantom results showed high accuracy and precision for both scanners. In vivo, higher accuracy and precision ( P < 0.001) was found for volume flow for the Aera prototype with Resp+ (-3.7 ± 10.4 mL, r = 0.89) compared to the Achieva product sequence (-17.8 ± 18.6 mL, r = 0.56). 4D-flow Resp- on Aera had somewhat larger bias (-9.3 ± 9.6 mL, r = 0.90) compared to Resp+ ( P = 0.005). KE measurements showed larger differences between scanners on the same day compared to the same scanner at different days. CONCLUSION: Sequence-specific in vivo validation of 4D-flow is needed before clinical use. 4D-flow with the Aera prototype sequence with a clinically acceptable acquisition time (<10 min) showed acceptable bias in healthy controls to be considered for clinical use. Intra-individual KE comparisons should use the same sequence.


Subject(s)
Blood Flow Velocity/physiology , Cardiac Imaging Techniques/instrumentation , Cardiovascular System/diagnostic imaging , Magnetic Resonance Imaging/instrumentation , Adult , Female , Humans , Image Processing, Computer-Assisted , Imaging, Three-Dimensional/instrumentation , Male , Phantoms, Imaging , Pulsatile Flow , Reproducibility of Results , Respiratory-Gated Imaging Techniques/instrumentation
20.
J Cardiovasc Magn Reson ; 20(1): 69, 2018 09 27.
Article in English | MEDLINE | ID: mdl-30257686

ABSTRACT

BACKGROUND: Myocardial fibrosis is a common pathophysiological process that is related to ventricular remodeling in congenital heart disease. However, the presence, characteristics, and clinical significance of myocardial fibrosis in Ebstein's anomaly have not been fully investigated. This study aimed to evaluate myocardial fibrosis using cardiovascular magnetic resonance (CMR) late gadolinium enhancement (LGE) and T1 mapping techniques, and to explore the significance of myocardial fibrosis in adolescent and adult patients with Ebstein's anomaly. METHODS: Forty-four consecutive patients with unrepaired Ebstein's anomaly (34.0 ± 16.2 years; 18 males), and an equal number of age- and gender-matched controls, were included. A comprehensive CMR protocol consisted of cine, LGE, and T1 mapping by modified Look-Locker inversion recovery (MOLLI) sequences were performed. Ventricular functional parameters, native T1, extracellular volume (ECV), and LGE were analyzed. Associations between myocardial fibrosis and disease severity, ventricular function, and NYHA classification were analyzed. RESULTS: LGE was found in 10 (22.7%) patients. Typical LGE in Ebstein's anomaly was located in the endocardium of the septum within the right ventricle (RV). The LV ECV of Ebstein's anomaly were significantly higher than those of the controls (30.0 ± 3.8% vs. 25.3 ± 2.3%, P < 0.001). An increased ECV was found to be independent of the existence of LGE. Positive LGE or higher ECV (≥30%) was associated with larger fRV volume, aRV volume, increased disease severity, and worse NYHA functional class. In addition, ECV was significantly correlated with the LV ejection fraction (P <  0.001). CONCLUSIONS: Both focal and diffuse myocardial fibrosis were observed in adolescent and adult patients with Ebstein's anomaly. Increased diffuse fibrosis is associated with worse LV function, increased Ebstein's severity, and worse clinical status.


Subject(s)
Ebstein Anomaly/diagnostic imaging , Magnetic Resonance Imaging, Cine , Myocardium/pathology , Ventricular Dysfunction, Left/diagnostic imaging , Ventricular Function, Left , Ventricular Remodeling , Adolescent , Adult , Age Factors , Case-Control Studies , Child , China/epidemiology , Contrast Media/administration & dosage , Cross-Sectional Studies , Disease Progression , Ebstein Anomaly/epidemiology , Ebstein Anomaly/pathology , Ebstein Anomaly/physiopathology , Female , Fibrosis , Gadolinium DTPA/administration & dosage , Humans , Male , Predictive Value of Tests , Prevalence , Prognosis , Registries , Risk Factors , Severity of Illness Index , Stroke Volume , Ventricular Dysfunction, Left/epidemiology , Ventricular Dysfunction, Left/pathology , Ventricular Dysfunction, Left/physiopathology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...