Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Biotechnol J ; 19(1): e2300195, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38037744

ABSTRACT

Cyclodextrin glycosyltransferase (CGTase) degrades starch into cyclodextrin via enzymatic activity. In this study, we immobilize CGTase from Thermoanaerobacter sp. on two supports, namely graphene nanoplatelets (GNP) consisting of short stacks of graphene nanoparticles and a calcium-based two-dimensional metal organic framework (Ca-TMA). The uptakes of CGTase on GNP and Ca-TMA reached 40 and 21 mg g-1 respectively, but immobilized CGTase on Ca-TMA showed a higher specific activity (38 U mg-1 ) than that on GNP (28 U mg-1 ). Analysis of secondary structures of CGTase, shows that immobilization reduces the proportion of ß-sheets in CGTase from 56% in the free to 49% and 51.3% for GNP and Ca-TMA respectively, α-helix from 38.5% to 18.1 and 37.5%, but led to increased ß-turns from 5.5 to 40% and 11.2% for GNP and Ca-TMA, respectively. Lower levels of conformational changes were observed over the more hydrophilic Ca-TMA compared to hydrophobic GNP, resulting in its better activity. Increased ß-turns were found to correlate with lower ß-CD production, while more ß-sheets and α-helix favored more ß-CD. Reusability studies revealed that GNP retains up to 74% of initial CGTase activity, while Ca-TMA dropped to 33% after eight consecutive uses. The results obtained in this work provide insight on the effect of support's surface properties on CGTase performance and can assist in developing robust CGTase-based biocatalysts for industrial application.


Subject(s)
Bacillus , Graphite , Bacillus/metabolism , Glucosyltransferases/chemistry
2.
Nanomaterials (Basel) ; 13(23)2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38063737

ABSTRACT

Analyzing acetone in the exhaled breath as a biomarker has proved to be a non-invasive method to detect diabetes in humans with good accuracy. In this work, a Bi-gallate MOF doped into a chitosan (CS) matrix containing an ionic liquid (IL) was fabricated to detect acetone gas with a low detection limit of 10 ppm at an operating temperature of 60 °C and 5 V operating bias. The sensor recorded the highest response to acetone in comparison to other test gases, proving its high selectivity along with long-term stability and repeatability. The sensor also exhibited ultra-fast response and recovery times of 15 ± 0.25 s and 3 ± 0.1 s, respectively. Moreover, the sensor membrane also exhibited flexibility and ease of fabrication, making it ideal to be employed as a real-time breath analyzer.

3.
Molecules ; 28(16)2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37630221

ABSTRACT

Cancer has been considered one of the most serious diseases in recent decades. Early diagnosis of cancer is a crucial step for expedited treatment. Ideally, detection of cancer biomarkers, which are usually elevated because of cancer, is the most straightforward approach to detecting cancer. Among these biomarkers, the carcinoembryonic antigen (CEA) is considered one of the most important tumor markers for colorectal cancer. The CEA has also been recognized as a biomarker for other types of cancers, including breast, gastric, ovarian, pancreatic, and lung cancers. Typically, conventional CEA testing depends on immunoassay approaches, which are known to be complex, highly expensive, and time consuming. Accordingly, various types of biosensors have been designed for the detection of cancer biomarkers. The main prerequisites of these biosensors are high sensitivity, fast response, and low cost. Many nanostructures have been involved in the design of biosensors, such as nanoparticles of certain metals and metal oxides that are further functionalized to contribute to the sensing of the biomarkers. Alternatively, metal organic frameworks (MOFs), which are extended crystalline structures comprising metal clusters surrounded by organic linkers, have been shown to be highly promising for the development of biosensors. The 3D structure of MOFs results in a combination of high surface area and high interconnected porosity, which are believed to facilitate their function in the design of a biosensor. This review briefly classifies and describes MOF-based biosensor trials that have been published recently for the aim of detecting CEA.


Subject(s)
Lung Neoplasms , Metal-Organic Frameworks , Nanoparticles , Humans , Carcinoembryonic Antigen , Biomarkers, Tumor
4.
Int J Mol Sci ; 24(10)2023 May 17.
Article in English | MEDLINE | ID: mdl-37240239

ABSTRACT

Silver nanoparticles are widely used in various industrial and biomedical applications; however, little is known about their potential cardiotoxicity after pulmonary exposure, particularly in hypertensive subjects. We assessed the cardiotoxicity of polyethylene glycol (PEG)-coated AgNPs in hypertensive (HT) mice. Saline (control) or PEG-AgNPs (0.5 mg/kg) were intratracheally (i.t.) instilled four times (on days 7, 14, 21, and 28 post-angiotensin II or vehicle [saline] infusion). On day 29, various cardiovascular parameters were evaluated. Systolic blood pressure and heart rate were higher in PEG-AgNPs-treated HT mice than in saline-treated HT or PEG-AgNPs-treated normotensive mice. The heart histology of PEG-AgNPs-treated HT mice had comparatively larger cardiomyocyte damage with fibrosis and inflammatory cells when compared with saline-treated HT mice. Similarly, the relative heart weight and the activities of lactate dehydrogenase and creatine kinase-MB and the concentration of brain natriuretic peptide concentration were significantly augmented in heart homogenates of HT mice treated with PEG-AgNPs compared with HT mice treated with saline or normotensive animals exposed to PEG-AgNPs. Similarly, the concentrations of endothelin-1, P-selectin, vascular cell adhesion molecule-1, and intercellular adhesion molecule-1 in heart homogenates were significantly higher than in the other two groups when HT mice were exposed to PEG-AgNPs. Markers of inflammation and oxidative and nitrosative stress were significantly elevated in heart homogenates of HT mice given PEG-AgNPs compared with HT mice treated with saline or normotensive animals exposed to PEG-AgNPs. The hearts of HT mice exposed to PEG-AgNPs had significantly increased DNA damage than those of HT mice treated with saline or normotensive mice treated with AgNPs. In conclusion, the cardiac injury caused by PEG-AgNPs was aggravated in hypertensive mice. The cardiotoxicity of PEG-AgNPs in HT mice highlights the importance of an in-depth assessment of their toxicity before using them in clinical settings, particularly in patients with pre-existing cardiovascular diseases.


Subject(s)
Hypertension , Metal Nanoparticles , Animals , Mice , Blood Pressure , Silver/pharmacology , Metal Nanoparticles/toxicity , Cardiotoxicity , Polyethylene Glycols , Hypertension/chemically induced
5.
Membranes (Basel) ; 13(3)2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36984720

ABSTRACT

Developing new materials for energy and environment-related applications is a critical research field. In this context, organic and metal-organic framework (MOF) materials are a promising solution for sensing hazardous gases and saving energy. Herein, a flexible membrane of the zeolitic imidazole framework (ZIF-67) mixed with a conductivity-controlled chitosan polymer was fabricated for detecting hydrogen sulfide (H2S) gas at room temperature (RT). The developed sensing device remarkably enhances the detection signal of 15 ppm of H2S gas at RT (23 °C). The response recorded is significantly higher than previously reported values. The optimization of the membrane doping percentage achieved exemplary results with respect to long-term stability, repeatability, and selectivity of the target gas among an array of several gases. The fabricated gas sensor has a fast response and a recovery time of 39 s and 142 s, respectively, for 15 ppm of H2S gas at RT. While the developed sensing device operates at RT and uses low bias voltage (0.5 V), the requirement for an additional heating element has been eliminated and the necessity for external energy is minimized. These novel features of the developed sensing device could be utilized for the real-time detection of harmful gases for a healthy and clean environment.

6.
Nanomaterials (Basel) ; 13(5)2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36903831

ABSTRACT

A variety of nanomaterials have been developed specifically for biomedical applications, such as drug delivery in cancer treatment. These materials involve both synthetic and natural nanoparticles and nanofibers of varying dimensions. The efficacy of a drug delivery system (DDS) depends on its biocompatibility, intrinsic high surface area, high interconnected porosity, and chemical functionality. Recent advances in metal-organic framework (MOF) nanostructures have led to the achievement of these desirable features. MOFs consist of metal ions and organic linkers that are assembled in different geometries and can be produced in 0, 1, 2, or 3 dimensions. The defining features of MOFs are their outstanding surface area, interconnected porosity, and variable chemical functionality, which enable an endless range of modalities for loading drugs into their hierarchical structures. MOFs, coupled with biocompatibility requisites, are now regarded as highly successful DDSs for the treatment of diverse diseases. This review aims to present the development and applications of DDSs based on chemically-functionalized MOF nanostructures in the context of cancer treatment. A concise overview of the structure, synthesis, and mode of action of MOF-DDS is provided.

7.
Sci Rep ; 13(1): 3114, 2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36813817

ABSTRACT

High-performance, room temperature-based novel sensing materials are one of the frontier research topics in the gas sensing field, and MXenes, a family of emerging 2D layered materials, has gained widespread attention due to their distinctive properties. In this work, we propose a chemiresistive gas sensor made from V2CTx MXene-derived, urchin-like V2O5 hybrid materials (V2C/V2O5 MXene) for gas sensing applications at room temperature. The as-prepared sensor exhibited high performance when used as the sensing material for acetone detection at room temperature. Furthermore, the V2C/V2O5 MXene-based sensor exhibited a higher response (S% = 11.9%) toward 15 ppm acetone than pristine multilayer V2CTx MXenes (S% = 4.6%). Additionally, the composite sensor demonstrated a low detection level at ppb levels (250 ppb) at room temperature, as well as high selectivity among different interfering gases, fast response-recovery time, good repeatability with minimal amplitude fluctuation, and excellent long-term stability. These improved sensing properties can be attributed to the possible formation of H-bonds in multilayer V2C MXenes, the synergistic effect of the newly formed composite of urchin-like V2C/V2O5 MXene sensor, and high charge carrier transport at the interface of V2O5 and V2C MXene.

8.
Nanoscale Adv ; 4(3): 697-732, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-36131834

ABSTRACT

The development of gas sensing devices to detect environmentally toxic, hazardous, and volatile organic compounds (VOCs) has witnessed a surge of immense interest over the past few decades, motivated mainly by the significant progress in technological advancements in the gas sensing field. A great deal of research has been dedicated to developing robust, cost-effective, and miniaturized gas sensing platforms with high efficiency. Compared to conventional metal-oxide based gas sensing materials, metal-organic frameworks (MOFs) have garnered tremendous attention in a variety of fields, including the gas sensing field, due to their fascinating features such as high adsorption sites for gas molecules, high porosity, tunable morphologies, structural diversities, and ability of room temperature (RT) sensing. This review summarizes the current advancement in various pristine MOF materials and their composites for different electrical transducer-based gas sensing applications. The review begins with a discussion on the overview of gas sensors, the significance of MOFs, and their scope in the gas sensing field. Next, gas sensing applications are divided into four categories based on different advanced transducers: chemiresistive, capacitive, quartz crystal microbalance (QCM), and organic field-effect transistor (OFET) based gas sensors. Their fundamental concepts, gas sensing ability towards various gases, sensing mechanisms, and their advantages and disadvantages are discussed. Finally, this review is concluded with a summary, existing challenges, and future perspectives.

9.
Nanomaterials (Basel) ; 12(12)2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35745376

ABSTRACT

A room temperature (RT) H2S gas sensor based on organic-inorganic nanocomposites has been developed by incorporating zinc oxide (ZnO) nanoparticles (NPs) into a conductivity-controlled organic polymer matrix. A homogeneous solution containing poly (vinyl alcohol) (PVA) and ionic liquid (IL) and further doped with ZnO NPs was used for the fabrication of a flexible membrane (approx. 200 µm in thickness). The sensor was assessed for its performance against hazardous gases at RT (23 °C). The obtained sensor exhibited good sensitivity, with a detection limit of 15 ppm, and a fast time response (24 ± 3 s) toward H2S gas. The sensor also showed excellent repeatability, long-term stability and selectivity toward H2S gas among other test gases. Furthermore, the sensor depicted a high flexibility, low cost, easy fabrication and low power consumption, thus holding great promise for flexible electronic gas sensors.

10.
Nanomaterials (Basel) ; 12(7)2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35407300

ABSTRACT

Recently, there has been a growing interest in using natural products as treatment alternatives in several diseases. Nerolidol is a natural product which has been shown to have protective effects in several conditions. The low water solubility of nerolidol and many other natural products limits their delivery to the body. In this research, a drug delivery system composed of alginate and chitosan was fabricated and loaded with nerolidol to enhance its water solubility. The chitosan-alginate nanoparticles were fabricated using a new method including the tween 80 pre-gelation, followed by poly-ionic crosslinking between chitosan negative and alginate positive groups. Several characterization techniques were used to validate the fabricated nanoparticles. The molecular interactions between the chitosan, alginate, and nerolidol molecules were confirmed using the Fourier transform infrared spectroscopy. The ultraviolet spectroscopy showed an absorbance peak of the blank nanoparticles at 200 nm and for the pure nerolidol at 280 nm. Using both scanning and transmission electron microscopy, the nanoparticles were found to be spherical in shape with an average size of 12 nm and 35 nm for the blank chitosan-alginate nanoparticles and the nerolidol-loaded chitosan-alginate nanoparticles, respectively. The nanoparticles were also shown to have a loading capacity of 51.7% and an encapsulation efficiency of 87%. A controlled release profile of the loaded drug for up to 28 h using an in vitro model was also observed, which is more efficient than the free form of nerolidol. In conclusion, chitosan-alginate nanoparticles and nerolidol loaded chitosan-alginate nanoparticles were successfully fabricated and characterized to show potential encapsulation and delivery using an in vitro model.

11.
Nanomaterials (Basel) ; 12(6)2022 Mar 10.
Article in English | MEDLINE | ID: mdl-35335724

ABSTRACT

Mixed matrix membranes (MMMs), possessing high porosity, have received extensive attention for gas sensing applications. However, those with high flexibility and significant sensitivity are rare. In this work, we report on the fabrication of a novel membrane, using Cu3(HHTP)2 MOF (Cu-MOF) embedded in a polymer matrix. A solution comprising a homogenous suspension of poly-vinyl alcohol (PVA) and ionic liquid (IL), and Cu-MOF solid particles, was cast onto a petri dish to obtain a flexible membrane (215 µm in thickness). The sensor membrane (Cu-MOF/PVA/IL), characterized for its structure and morphology, was assessed for its performance in sensing against various test gases. A detection limit of 1 ppm at 23 °C (room temperature) for H2S was achieved, with a response time of 12 s. Moreover, (Cu-MOF/PVA/IL) sensor exhibited excellent repeatability, long-term stability, and selectivity towards H2S gas. The other characteristics of the (Cu-MOF/PVA/IL) sensor include high flexibility, low cost, low-power consumption, and easy fabrication technique, which nominate this sensor as a potential candidate for use in practical industrial applications.

12.
Oxid Med Cell Longev ; 2022: 2079630, 2022.
Article in English | MEDLINE | ID: mdl-35111278

ABSTRACT

With advent of nanotechnology, silver nanoparticles, AgNPs owing majorly to their antibacterial properties, are used widely in food industry and biomedical applications implying human exposure by various routes including inhalation. Several reports have suggested AgNPs induced pathophysiological effects in a cardiovascular system. However, cardiovascular diseases such as hypertension may interfere with AgNPs-induced response, yet majority of them are understudied. The aim of this work was to evaluate the thrombotic complications in response to polyethylene glycol- (PEG-) coated AgNPs using an experimental hypertensive (HT) mouse model. Saline (control) or PEG-AgNPs (0.5 mg/kg) were intratracheally (i.t.) instilled four times, i.e., on days 7, 14, 21, and 28 post-angiotensin II-induced HT, or vehicle (saline) infusion. On day 29, various parameters were assessed including thrombosis in pial arterioles and venules, platelet aggregation in whole blood in vitro, plasma markers of coagulation, and fibrinolysis and systemic oxidative stress. Pulmonary exposure to PEG-AgNPs in HT mice induced an aggravation of in vivo thrombosis in pial arterioles and venules compared to normotensive (NT) mice exposed to PEG-AgNPs or HT mice given saline. The prothrombin time, activated partial thromboplastin time, and platelet aggregation in vitro were exacerbated after exposure to PEG-AgNPs in HT mice compared with either NT mice exposed to nanoparticles or HT mice exposed to saline. Elevated concentrations of fibrinogen, plasminogen activator inhibitor-1, and von Willebrand factor were seen after the exposure to PEG-AgNPs in HT mice compared with either PEG-AgNPs exposed NT mice or HT mice given with saline. Likewise, the plasma levels of superoxide dismutase and nitric oxide were augmented by PEG-AgNPs in HT mice compared with either NT mice exposed to nanoparticles or HT mice exposed to saline. Collectively, these results demonstrate that PEG-AgNPs can potentially exacerbate the in vivo and in vitro procoagulatory and oxidative stress effect in HT mice and suggest that population with hypertension are at higher risk of the toxicity of PEG-AgNPs.


Subject(s)
Hypertension/pathology , Metal Nanoparticles/toxicity , Platelet Aggregation/drug effects , Silver/chemistry , Angiotensin II/adverse effects , Angiotensin II/pharmacology , Animals , Disease Models, Animal , Female , Fibrinogen/metabolism , Hypertension/etiology , Male , Metal Nanoparticles/chemistry , Mice , Mice, Inbred BALB C , Oxidative Stress/drug effects , Oxidative Stress/genetics , Partial Thromboplastin Time , Polyethylene Glycols/chemistry , Prothrombin Time , von Willebrand Factor/metabolism
13.
ACS Omega ; 6(27): 17690-17697, 2021 Jul 13.
Article in English | MEDLINE | ID: mdl-34278154

ABSTRACT

We report the fabrication of a novel metal-organic framework (MOF)-polymer mixed-matrix flexible membrane for the detection of hydrogen sulfide (H2S) gas at room temperature. This high-performance gas sensor is based on MOF-5 microparticles embedded on a conductivity-controlled chitosan (CS) organic membrane. The conductivity of the organic membrane is controlled by blending it with a glycerol ionic liquid (IL) at different concentrations. The sensor showed a remarkable detection sensitivity for H2S gas at a concentrations level as low as 1 ppm at room temperature. The MOF-5/CS/IL gas sensor demonstrates a highly desirable detection selectivity, fast response time (<8 s), recovery time of less than 30 s, and outstanding sensing stability averaging at 97% detection with 50 ppm of H2S gas. This composite having high sensitivity, low-power consumption, and flexibility holds great promise for addressing current challenges pertinent to environmental sustainability.

14.
Carbohydr Polym ; 258: 117643, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33593537

ABSTRACT

Electrospun nanofibers and solution-casting nanofilms were produced from an environmentally friendly cellulose acetate (CA) blended with glycerol (as an ionic liquid (IL)), mixed with polypyrrole (PPy, a conducting polymer) and doped with tungsten oxide (WO3) nanoparticles. The sensing membranes fabricated were used to detect H2S gas at room temperature and shown to exhibit high performance. The results revealed that the lowest operating temperature of both nanofiber and nanofilm sensors was 20 °C, with a minimum gas detection limit of 1 ppm. Moreover, the sensor exhibits a reasonably fast response, with a minimum average response time of 22.8 and 31.7 s for the proposed nanofiber and nanofilm based sensors, respectively. Furthermore, the results obtained indicated an excellent reproducibility, long-term stability, and low humidity dependence. Such distinctive properties coupled with an easy fabrication technique provide a promising potential to achieve a precise monitoring of harmful H2S gas in both indoor and outdoor atmospheres.

15.
Carbohydr Polym ; 236: 116064, 2020 May 15.
Article in English | MEDLINE | ID: mdl-32172879

ABSTRACT

In this work, a novel selective and low temperature H2S gas sensor was fabricated based on copper (II) oxide nanoparticles (CuO NPs) in different concentrations, embedded in a conductivity-engineered organic (glycerol ionic liquid-doped chitosan) membrane/film. The sensing membranes of organic-inorganic nanocomposites (CS-IL-CuO) were prepared by casting method and were tested against H2S gas with reference to time at different temperatures and H2S gas concentrations. The fabricated sensor showed a fast response (14 s) and good sensitivity (15 ppm) towards H2S gas at a low temperature of 40 °C. Moreover, the sensor showed a high reversibility and less humidity dependence at 40 °C. Moreover, this type of hybrid nanocomposites sensor is easy and inexpensive to manufacture and is energy efficient. Thus, it has potential to be used for industrial applications in harsh environments.

16.
Spectrochim Acta A Mol Biomol Spectrosc ; 222: 117189, 2019 Nov 05.
Article in English | MEDLINE | ID: mdl-31177004

ABSTRACT

Time-resolved photoluminescence measurements were used to characterize the photophysical properties of 6-thienyllumazine (TLm) fluorophores in cellulose acetate nanofibers (NFs) in the presence and absence of mercuric acetate salts. In solution, excited-state proton transfer (ESPT) from TLm to water molecules was investigated at pH from 2 to 12. The insertion of thienyl group into lumazine introduces cis and trans conformers while keeping the same tautomerization structures. Global and target analyses were employed to resolve the true emission spectra of all prototropic, tautomeric, and rotameric species for TLm in water. The results support the premise that only the cis conformers are related to the ESPT process. However, no ESPT from TLm to a nearby water molecule was observed in NFs. The addition of NFs increases the excited-state lifetime of TLm in the solid state because of combined polarity/confinement effects. The solid-state fluorescence of TLm (in NFs) was quenched by mercuric acetate through different mechanisms-dynamic and static-depending on the applied pressure-atmospheric and vacuum, respectively. The new solid-state sensor is simple, ecofriendly, and instantly fabricated. TLM-loaded NFs can detect mercuric ions at a concentration of 50 picomolar. The formation of non-fluorescent ground-state complex between TLm molecules and mercuric ions inside the pores of NFs was achieved under vacuum condition.

17.
Toxicol Appl Pharmacol ; 367: 36-50, 2019 03 15.
Article in English | MEDLINE | ID: mdl-30639276

ABSTRACT

Pulmonary exposure to silver nanoparticles (AgNPs) revealed the potential of nanoparticles to cause pulmonary toxicity, cross the alveolar-capillary barrier, and distribute to remote organs. However, the mechanism underlying the effects of AgNPs on the cardiovascular system remains unclear. Hence, we investigated the cardiovascular mechanisms of pulmonary exposure to AgNPs (10 nm) with varying coatings [polyvinylpyrrolidone (PVP) and citrate (CT)], concentrations (0.05, 0.5 and 5 mg/kg body weight), and time points (1 and 7 days) in BALB/C mice. Silver ions (Ag+) were used as ionic control. Exposure to AgNPs induced lung inflammation. In heart, tumor necrosis factor α, interleukin 6, total antioxidants, reduced glutathione and 8-isoprostane significantly increased for both AgNPs. Moreover, AgNPs caused oxidative DNA damage and apoptosis in the heart. The plasma concentration of fibrinogen, plasminogen activation inhibitor-1 and brain natriuretic peptide were significantly increased for both coating AgNPs. Likewise, the prothrombin time and activated partial thromboplastin time were significantly decreased. Additionally, the PVP- and CT- AgNPs induced a significant dose-dependent increase in thrombotic occlusion time in cerebral microvessels at both time points. In vitro study on mice whole blood exhibited significant platelet aggregation for both particle types. Compared with AgNPs, Ag+ increased thrombogenicity and markers of oxidative stress, but did not induce either DNA damage or apoptosis in the heart. In conclusion, pulmonary exposure to AgNPs caused cardiac oxidative stress, DNA damage and apoptosis, alteration of coagulation markers and thrombosis. Our findings provide a novel mechanistic insight into the cardiovascular pathophysiological effects of lung exposure to AgNPs.


Subject(s)
Blood Coagulation/drug effects , Citric Acid/toxicity , Heart Diseases/chemically induced , Intracranial Thrombosis/chemically induced , Metal Nanoparticles/toxicity , Myocytes, Cardiac/drug effects , Povidone/toxicity , Silver/toxicity , Animals , Apoptosis/drug effects , Cardiotoxicity , DNA Damage , Dose-Response Relationship, Drug , Female , Heart Diseases/metabolism , Heart Diseases/pathology , Inflammation Mediators/metabolism , Inhalation Exposure , Intracranial Thrombosis/blood , Male , Mice, Inbred BALB C , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Oxidative Stress/drug effects , Platelet Aggregation/drug effects , Surface Properties , Time Factors
18.
Sci Rep ; 8(1): 16951, 2018 11 16.
Article in English | MEDLINE | ID: mdl-30446676

ABSTRACT

Poor prognoses remain the most challenging aspect of hepatocellular carcinoma (HCC) therapy. Consequently, alternative therapeutics are essential to control HCC. This study investigated the anticancer effects of safranal against HCC using in vitro, in silico, and network analyses. Cell cycle and immunoblot analyses of key regulators of cell cycle, DNA damage repair and apoptosis demonstrated unique safranal-mediated cell cycle arrest at G2/M phase at 6 and 12 h, and at S-phase at 24 h, and a pronounced effect on DNA damage machinery. Safranal also showed pro-apoptotic effect through activation of both intrinsic and extrinsic initiator caspases; indicating ER stress-mediated apoptosis. Gene set enrichment analysis provided consistent findings where UPR is among the top terms of up-regulated genes in response to safranal treatment. Thus, proteins involved in ER stress were regulated through safranal treatment to induce UPR in HepG2 cells.


Subject(s)
Apoptosis/drug effects , Cyclohexenes/pharmacology , DNA Breaks, Double-Stranded/drug effects , Endoplasmic Reticulum Stress/drug effects , Terpenes/pharmacology , Apoptosis/genetics , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , DNA Repair , Endoplasmic Reticulum Stress/genetics , G2 Phase Cell Cycle Checkpoints/drug effects , G2 Phase Cell Cycle Checkpoints/genetics , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/drug effects , Gene Ontology , Gene Regulatory Networks , Hep G2 Cells , Humans , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/pathology
19.
J Biomed Mater Res B Appl Biomater ; 100(4): 1059-67, 2012 May.
Article in English | MEDLINE | ID: mdl-22331563

ABSTRACT

Zinc polycarboxylate dental cement is known to form both molecular and mechanical bonds with native tooth materials. However, its relatively weak mechanical properties limit its applications. Wollastonite fibers, with different aspect ratios, were blended with ZnO, prior to its mixing with polyacrylic acid, at weight percentages up to 25%. Setting time, density, compressive strength, and Young's modulus of the formed composites were determined. Composition and morphology of the composites were determined by XRD, IR, and SEM before and after treatment in simulated body fluids. A slight delay in the setting time of the composites was observed. An overall improvement in the compressive strength and modulus of these composites was observed up to 5 wt % of wollastonites, followed by a decrease with increasing the proportion of wollastonite in the composites. Immersion of these composites in SBF solutions resulted in the formation of apatite deposits on the surfaces of the reinforcing fibers.


Subject(s)
Bone Cements/chemistry , Calcium Compounds/chemistry , Polycarboxylate Cement/chemistry , Silicates/chemistry , Acrylic Resins/chemistry , Biocompatible Materials/chemistry , Body Fluids/chemistry , Calibration , Compressive Strength , Elastic Modulus , Humans , In Vitro Techniques , Materials Testing , Microscopy, Electron, Scanning/methods , Powders/chemistry , Reproducibility of Results , Stress, Mechanical , X-Ray Diffraction
20.
J Biomater Sci Polym Ed ; 22(4-6): 733-52, 2011.
Article in English | MEDLINE | ID: mdl-20566055

ABSTRACT

Self-setting hydroxyapatite-biodegradable injectable composites are excellent candidates for applications in orthopaedics. We have previously demonstrated the feasibility of development of self-setting calcium-deficient nanocrystalline hydroxyapatite-polymer composites using different calcium phosphate precursors and biodegradable polyphosphazenes. This study aimed to evaluate these novel injectable composites as suitable materials for orthopaedic applications through evaluating their biomechanical properties, osteoblast cellular attachment and gene expression over time. Our studies demonstrated that the morphology of the composite groups (PNEA-CDHA, PNEA-CDSHA, PNEA(50)mPh(50)-CDHA, PNEA(50)mPh(50)-CDSHA, PNEA(50)PhPh(50)-CDHA, and PNEA(50)PhPh(50)-CDSHA) formed was similar and found to have micro- and nanoporous structures resembling trabecular bone. The osteoblast phenotypic marker of bone, alkaline phosphatase, was expressed by the cells on the surface of the composites throughout the study and was comparable to tissue-culture polystyrene (control). Furthermore, the cells seeded on the composites expressed the characteristic osteoblastic genes, such as type-I collagen, alkaline phosphatase, osteocalcin, osteopontin and bone sialoprotein, indicating osteoblast differentiation, maturation and mineralization. Within our injectable composite groups, significant gene expression levels were displayed (P < 0.05). These novel injectable biodegradable polyphosphazenes-calcium-deficient hydroxyapatites materials are promising candidates for orthopaedic applications.


Subject(s)
Biocompatible Materials/chemistry , Injections , Nanocomposites/chemistry , Organophosphorus Compounds/chemistry , Orthopedic Procedures , Polymers/chemistry , 3T3 Cells , Animals , Biocompatible Materials/metabolism , Gene Expression , Materials Testing , Mice , Molecular Structure , Organophosphorus Compounds/metabolism , Polymers/metabolism , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...