Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Struct Mol Biol ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760633

ABSTRACT

To prevent detrimental chromosome re-replication, DNA loading of a double hexamer of the minichromosome maintenance (MCM) replicative helicase is temporally separated from DNA unwinding. Upon S-phase transition in yeast, DNA unwinding is achieved in two steps: limited opening of the double helix and topological separation of the two DNA strands. First, Cdc45, GINS and Polε engage MCM to assemble a double CMGE with two partially separated hexamers that nucleate DNA melting. In the second step, triggered by Mcm10, two CMGEs separate completely, eject the lagging-strand template and cross paths. To understand Mcm10 during helicase activation, we used biochemical reconstitution with cryogenic electron microscopy. We found that Mcm10 splits the double CMGE by engaging the N-terminal homo-dimerization face of MCM. To eject the lagging strand, DNA unwinding is started from the N-terminal side of MCM while the hexamer channel becomes too narrow to harbor duplex DNA.

2.
Methods Enzymol ; 672: 203-231, 2022.
Article in English | MEDLINE | ID: mdl-35934476

ABSTRACT

The loading of the MCM replicative helicase onto eukaryotic origins of replication occurs via a sequential, symmetric mechanism. Here, we describe a method to study this multistep reaction using electron microscopy. Tools presented include protein expression and purification protocols, methods to produce asymmetric replication origin substrates and bespoke image processing strategies. DNA templates include recognisable protein roadblocks that help to orient DNA replication factors along a specific origin sequence. Detailed electron microscopy image processing protocols are provided to reposition 2D averages onto the original micrograph for the in silico reconstitution of fully occupied origins of replication. Using these tools, a chemically trapped helicase loading intermediate is observed sliding along origin DNA, showcasing a key feature of the MCM loading mechanism. Although developed to study replicative helicase loading, this method can be employed to investigate the mechanism of other multicomponent biochemical reactions, occurring on a flexible polymeric substrate.


Subject(s)
DNA Helicases , Replication Origin , DNA , DNA Helicases/metabolism , DNA Replication , Microscopy, Electron
3.
Nature ; 606(7916): 1007-1014, 2022 06.
Article in English | MEDLINE | ID: mdl-35705812

ABSTRACT

The activation of eukaryotic origins of replication occurs in temporally separated steps to ensure that chromosomes are copied only once per cell cycle. First, the MCM helicase is loaded onto duplex DNA as an inactive double hexamer. Activation occurs after the recruitment of a set of firing factors that assemble two Cdc45-MCM-GINS (CMG) holo-helicases. CMG formation leads to the underwinding of DNA on the path to the establishment of the replication fork, but whether DNA becomes melted at this stage is unknown1. Here we use cryo-electron microscopy to image ATP-dependent CMG assembly on a chromatinized origin, reconstituted in vitro with purified yeast proteins. We find that CMG formation disrupts the double hexamer interface and thereby exposes duplex DNA in between the two CMGs. The two helicases remain tethered, which gives rise to a splayed dimer, with implications for origin activation and replisome integrity. Inside each MCM ring, the double helix becomes untwisted and base pairing is broken. This comes as the result of ATP-triggered conformational changes in MCM that involve DNA stretching and protein-mediated stabilization of three orphan bases. Mcm2 pore-loop residues that engage DNA in our structure are dispensable for double hexamer loading and CMG formation, but are essential to untwist the DNA and promote replication. Our results explain how ATP binding nucleates origin DNA melting by the CMG and maintains replisome stability at initiation.


Subject(s)
DNA Replication , DNA , Minichromosome Maintenance Proteins , Replication Origin , Saccharomyces cerevisiae Proteins , Adenosine Triphosphate/metabolism , Cell Cycle Proteins/chemistry , Cell Cycle Proteins/metabolism , Chromatin , Cryoelectron Microscopy , DNA/chemistry , DNA/metabolism , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , In Vitro Techniques , Minichromosome Maintenance Proteins/chemistry , Minichromosome Maintenance Proteins/metabolism , Nuclear Proteins , Nucleic Acid Denaturation , Protein Conformation , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism
4.
Curr Opin Struct Biol ; 72: 279-286, 2022 02.
Article in English | MEDLINE | ID: mdl-35026552

ABSTRACT

DNA replication has been reconstituted in vitro with yeast proteins, and the minimal system requires the coordinated assembly of 16 distinct replication factors, consisting of 42 polypeptides. To understand the molecular interplay between these factors at the single residue level, new structural biology tools are being developed. Inspired by advances in single-molecule fluorescence imaging and cryo-tomography, novel single-particle cryo-EM experiments have been used to characterise the structural mechanism for the loading of the replicative helicase. Here, we discuss how in silico reconstitution of single-particle cryo-EM data can help describe dynamic systems that are difficult to approach with conventional three-dimensional classification tools.


Subject(s)
DNA Replication , Single Molecule Imaging , Cryoelectron Microscopy/methods , Single Molecule Imaging/methods , Tomography
5.
Nat Struct Mol Biol ; 29(1): 10-20, 2022 01.
Article in English | MEDLINE | ID: mdl-34963704

ABSTRACT

Loading of the eukaryotic replicative helicase onto replication origins involves two MCM hexamers forming a double hexamer (DH) around duplex DNA. During S phase, helicase activation requires MCM phosphorylation by Dbf4-dependent kinase (DDK), comprising Cdc7 and Dbf4. DDK selectively phosphorylates loaded DHs, but how such fidelity is achieved is unknown. Here, we determine the cryogenic electron microscopy structure of Saccharomyces cerevisiae DDK in the act of phosphorylating a DH. DDK docks onto one MCM ring and phosphorylates the opposed ring. Truncation of the Dbf4 docking domain abrogates DH phosphorylation, yet Cdc7 kinase activity is unaffected. Late origin firing is blocked in response to DNA damage via Dbf4 phosphorylation by the Rad53 checkpoint kinase. DDK phosphorylation by Rad53 impairs DH phosphorylation by blockage of DDK binding to DHs, and also interferes with the Cdc7 active site. Our results explain the structural basis and regulation of the selective phosphorylation of DNA-loaded MCM DHs, which supports bidirectional replication.


Subject(s)
Cell Cycle Proteins/metabolism , DNA, Fungal/metabolism , Protein Multimerization , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Amino Acid Sequence , Cell Cycle Proteins/chemistry , Checkpoint Kinase 2/metabolism , Minichromosome Maintenance Complex Component 4/chemistry , Minichromosome Maintenance Complex Component 4/metabolism , Molecular Docking Simulation , Nucleotides/metabolism , Phosphorylation , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Substrate Specificity
6.
Nature ; 575(7784): 704-710, 2019 11.
Article in English | MEDLINE | ID: mdl-31748745

ABSTRACT

In preparation for bidirectional DNA replication, the origin recognition complex (ORC) loads two hexameric MCM helicases to form a head-to-head double hexamer around DNA1,2. The mechanism of MCM double-hexamer formation is debated. Single-molecule experiments have suggested a sequential mechanism, in which the ORC-dependent loading of the first hexamer drives the recruitment of the second hexamer3. By contrast, biochemical data have shown that two rings are loaded independently via the same ORC-mediated mechanism, at two inverted DNA sites4,5. Here we visualize MCM loading using time-resolved electron microscopy, and identify intermediates in the formation of the double hexamer. We confirm that both hexamers are recruited via the same interaction that occurs between ORC and the C-terminal domains of the MCM helicases. Moreover, we identify the mechanism of coupled MCM loading. The loading of the first MCM hexamer around DNA creates a distinct interaction site, which promotes the engagement of ORC at the N-terminal homodimerization interface of MCM. In this configuration, ORC is poised to direct the recruitment of the second hexamer in an inverted orientation, which is suitable for the formation of the double hexamer. Our results therefore reconcile the two apparently contrasting models derived from single-molecule experiments and biochemical data.


Subject(s)
Cryoelectron Microscopy , Models, Molecular , Origin Recognition Complex/metabolism , Origin Recognition Complex/ultrastructure , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/ultrastructure , Computer Simulation , Nucleosomes/metabolism , Nucleosomes/ultrastructure , Origin Recognition Complex/chemistry , Protein Binding , Protein Structure, Quaternary , Saccharomyces cerevisiae/physiology , Saccharomyces cerevisiae Proteins/chemistry
7.
Mol Oncol ; 12(9): 1447-1463, 2018 09.
Article in English | MEDLINE | ID: mdl-30004628

ABSTRACT

Breast cancer is the most common cancer in women worldwide. The tumor microenvironment contributes to tumor progression by inducing cell dissemination from the primary tumor and metastasis. TGFß signaling is involved in breast cancer progression and is specifically elevated during metastatic transformation in aggressive breast cancer. In this study, we performed genomewide correlation analysis of TGFBR2 expression in a panel of 51 breast cancer cell lines and identified that MET is coregulated with TGFBR2. This correlation was confirmed at the protein level in breast cancer cell lines and human tumor tissues. Flow cytometric analysis of luminal and basal-like breast cancer cell lines and examination of 801 tumor specimens from a prospective cohort of breast cancer patients using reverse phase protein arrays revealed that expression of TGFBR2 and MET is increased in basal-like breast cancer cell lines, as well as in triple-negative breast cancer tumor tissues, compared to other subtypes. Using real-time cell analysis technology, we demonstrated that TGFß1 triggered hepatocyte growth factor (HGF)-induced and MET-dependent migration in vitro. Bioinformatic analysis predicted that TGFß1 induces expression of C-ets-1 as a candidate transcription factor regulating MET expression. Indeed, TGFß1-induced expression of ETS1 and breast cancer cell migration was blocked by knockdown of ETS1. Further, we identified that MET is a direct target of miR-128-3p and that this miRNA is negatively regulated by TGFß1. Overexpression of miR-128-3p reduced MET expression and abrogated HGF-induced cell migration of invasive breast cancer cells. In conclusion, we have identified that TGFß1 regulates HGF-induced and MET-mediated cell migration, through positive regulation of C-ets-1 and negative regulation of miR-128-3p expression in basal-like breast cancer cell lines and in triple-negative breast cancer tissue.


Subject(s)
Hepatocyte Growth Factor/metabolism , MicroRNAs/metabolism , Proto-Oncogene Protein c-ets-1/metabolism , Proto-Oncogene Proteins c-met/genetics , Receptor, Transforming Growth Factor-beta Type II/genetics , Transforming Growth Factor beta1/metabolism , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , Cell Movement , Disease Progression , Feedback, Physiological , Female , Gene Expression , Gene Expression Regulation, Neoplastic , Genome-Wide Association Study , Humans , MCF-7 Cells , Prospective Studies , Proto-Oncogene Proteins c-met/metabolism , Receptor, Transforming Growth Factor-beta Type II/metabolism , Triple Negative Breast Neoplasms/pathology , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL
...