Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Pancreas ; 45(10): 1452-1460, 2016 11.
Article in English | MEDLINE | ID: mdl-27518460

ABSTRACT

OBJECTIVES: Our aim was to establish and characterize a novel pancreatic ductal adenocarcinoma cell line from a patient in whom the origin of the invasive carcinoma could be traced back to the intraductal papillary mucinous neoplasm (IPMN) precursor lesion. METHODS: The primary patient-derived tumor was propagated in immunocompromised mice for 2 generations and used to establish a continuous in vitro culture termed ASAN-PaCa. Transplantation to fertilized chicken eggs confirmed the tumorigenic potential in vivo. Molecular analyses included karyotyping, next-generation genomic sequencing, expression analysis of marker proteins, and mucin-profiling. RESULTS: The analysis of marker proteins confirmed the epithelial nature of the established cell line, and revealed that the expression of the mucin MUC1 was higher than that of MUC2 and MUC5AC. ASAN-PaCa cells showed rapid in vitro and in vivo growth and multiple chromosomal aberrations. They harbored mutations in KRAS (Q61H), TP53 (Y220C), and RNF43 (I47V and L418M) but lacked either IPMN-specific GNAS or presumed pancreatic ductal adenocarcinoma-driving mutations in KRAS (codons 12/13), SMAD, and CDKN2A genes. CONCLUSIONS: ASAN-PaCa cell line represents a novel preclinical model of pancreatic adenocarcinoma arising in the background of IPMN, and offers an opportunity to study how further introduction of known driver mutations might contribute to pancreatic carcinogenesis.


Subject(s)
Adenocarcinoma , Pancreatic Neoplasms , Animals , Cell Line , Humans , Mice , Mucin-2
2.
J Virol ; 88(10): 5263-76, 2014 May.
Article in English | MEDLINE | ID: mdl-24574398

ABSTRACT

UNLABELLED: Novel therapies employing oncolytic viruses have emerged as promising anticancer modalities. The cure of particularly aggressive malignancies requires induction of immunogenic cell death (ICD), coupling oncolysis with immune responses via calreticulin, ATP, and high-mobility group box protein B1 (HMGB1) release from dying tumor cells. The present study shows that in human pancreatic cancer cells (pancreatic ductal adenocarcinoma [PDAC] cells n=4), oncolytic parvovirus H-1 (H-1PV) activated multiple interconnected death pathways but failed to induce calreticulin exposure or ATP release. In contrast, H-1PV elevated extracellular HMGB1 levels by 4.0±0.5 times (58%±9% of total content; up to 100 ng/ml) in all infected cultures, whether nondying, necrotic, or apoptotic. An alternative secretory route allowed H-1PV to overcome the failure of gemcitabine to trigger HMGB1 release, without impeding cytotoxicity or other ICD activities of the standard PDAC medication. Such broad resistance of H-1PV-induced HMGB1 release to apoptotic blockage coincided with but was uncoupled from an autocrine interleukin-1ß (IL-1ß) loop. That and the pattern of viral determinants maintained in gemcitabine-treated cells suggested the activation of an inflammasome/caspase 1 (CASP1) platform alongside DNA detachment and/or nuclear exclusion of HMGB1 during early stages of the viral life cycle. We concluded that H-1PV infection of PDAC cells is signaled through secretion of the alarmin HMGB1 and, besides its own oncolytic effect, might convert drug-induced apoptosis into an ICD process. A transient arrest of cells in the cyclin A1-rich S phase would suffice to support compatibility of proliferation-dependent H-1PV with cytotoxic regimens. These properties warrant incorporation of the oncolytic virus H-1PV, which is not pathogenic in humans, into multimodal anticancer treatments. IMPORTANCE: The current therapeutic concepts targeting aggressive malignancies require an induction of immunogenic cell death characterized by exposure of calreticulin (CRT) as well as release of ATP and HMGB1 from dying cells. In pancreatic tumor cells (PDAC cells) infected with the oncolytic parvovirus H-1PV, only HMGB1 was released by all infected cells, whether nondying, necrotic, or succumbing to one of the programmed death pathways, including contraproductive apoptosis. Our data suggest that active secretion of HMGB1 from PDAC cells is a sentinel reaction emerging during early stages of the viral life cycle, irrespective of cell death, that is compatible with and complements cytotoxic regimens. Consistent induction of HMGB1 secretion raised the possibility that this reaction might be a general "alarming" phenomenon characteristic of H-1PV's interaction with the host cell; release of IL-1ß points to the possible involvement of a danger-sensing inflammasome platform. Both provide a basis for further virus-oriented studies.


Subject(s)
Antineoplastic Agents/metabolism , Cell Death , Deoxycytidine/analogs & derivatives , Epithelial Cells/physiology , Oncolytic Viruses/growth & development , Parvovirus/growth & development , Cell Line, Tumor , Deoxycytidine/metabolism , Epithelial Cells/drug effects , Epithelial Cells/virology , HMGB1 Protein/metabolism , Humans , Signal Transduction , Gemcitabine
3.
Int J Cancer ; 134(11): 2572-82, 2014 Jun 01.
Article in English | MEDLINE | ID: mdl-24214898

ABSTRACT

Hypoxia and dysfunctional tumor vessels represent a prominent feature of pancreatic cancer, being, at least in part, responsible for chemotherapy resistance and immune suppression in these tumors. We tested whether the increase of oxygen delivery induced in vivo by myo-inositol trispyrophosphate (ITPP) can reverse hypoxia, control tumor growth and improve chemotherapy response. Tumor size, metastatic development (microcomputed tomography scan follow-up) and the survival of rats and nude or NOD.SCID mice, (bearing syngenic rat and MiaPaCa2- or patient-derived pancreatic tumors), were determined on ITPP and/or gemcitabine treatment. Partial oxygen pressure, expression of angiogenic factors and tumor histology were evaluated. Infiltration and oxidative status of immune cells, as well as chemotherapy penetration in tumors, were determined by fluorescence-activated cell sorting, fluorometry, nitric oxide release assays, Western blot and confocal microscopy. Weekly intravenous ITPP application resulted in the inhibition of metastasis development and restricted primary tumor growth, showing a superior effect on the rats' survival compared with gemcitabine. ITPP treatment restored tumor normoxia and caused a reduction in hypoxia inducible factor-1α levels, with subsequent VEGF and Lox downregulation, resulting in improved vessel structure and decreased desmoplasia. The latter effects translated into elevated immune cells influx and improved susceptibility to gemcitabine treatment. Growth of human pancreatic tumor xenografts was strongly inhibited by administration of ITPP. ITPP exploits a two-stage mechanism causing rapid, early and sustainable late stage normoxia. This is due to the angiogenic factor modulation and vascular normalization, leading to enhanced chemotherapy delivery and synergistic life prolongation, on combination with low doses of gemcitabine.


Subject(s)
Antimetabolites, Antineoplastic/therapeutic use , Deoxycytidine/analogs & derivatives , Hypoxia/drug therapy , Inositol Phosphates/therapeutic use , Liver Neoplasms/drug therapy , Pancreatic Neoplasms/drug therapy , Animals , Apoptosis/drug effects , Blotting, Western , Cell Proliferation/drug effects , Deoxycytidine/therapeutic use , Drug Synergism , Fluorescent Antibody Technique , Humans , Hypoxia/metabolism , Hypoxia/pathology , Hypoxia-Inducible Factor 1, alpha Subunit/antagonists & inhibitors , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Liver Neoplasms/metabolism , Liver Neoplasms/secondary , Male , Mice , Mice, Inbred NOD , Mice, SCID , Neovascularization, Pathologic , Oxygen/metabolism , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , RNA, Messenger/genetics , Rats , Rats, Inbred Lew , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Tumor Cells, Cultured , Gemcitabine
4.
EMBO Mol Med ; 5(10): 1537-55, 2013 10.
Article in English | MEDLINE | ID: mdl-24092664

ABSTRACT

The rat parvovirus H-1PV has oncolytic and tumour-suppressive properties potentially exploitable in cancer therapy. This possibility is being explored and results are encouraging, but it is necessary to improve the oncotoxicity of the virus. Here we show that this can be achieved by co-treating cancer cells with H-1PV and histone deacetylase inhibitors (HDACIs) such as valproic acid (VPA). We demonstrate that these agents act synergistically to kill a range of human cervical carcinoma and pancreatic carcinoma cell lines by inducing oxidative stress, DNA damage and apoptosis. Strikingly, in rat and mouse xenograft models, H-1PV/VPA co-treatment strongly inhibits tumour growth promoting complete tumour remission in all co-treated animals. At the molecular level, we found acetylation of the parvovirus nonstructural protein NS1 at residues K85 and K257 to modulate NS1-mediated transcription and cytotoxicity, both of which are enhanced by VPA treatment. These results warrant clinical evaluation of H-1PV/VPA co-treatment against cervical and pancreatic ductal carcinomas.


Subject(s)
Carcinoma/therapy , Oncolytic Viruses/physiology , Parvovirus/physiology , Valproic Acid/pharmacology , Animals , Apoptosis/drug effects , Carcinoma/drug therapy , Carcinoma/pathology , Cell Line, Tumor , Disease Models, Animal , Female , HeLa Cells , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Oxidative Stress/drug effects , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Parvovirus/metabolism , Rats , Rats, Nude , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/pathology , Valproic Acid/therapeutic use
5.
PLoS One ; 8(1): e55086, 2013.
Article in English | MEDLINE | ID: mdl-23383065

ABSTRACT

The oncotropism of Minute Virus of Mice (MVMp) is partially related to the stimulation of an antiviral response mediated by type-I interferons (IFNs) in normal but not in transformed mouse cells. The present work was undertaken to assess whether the oncotropism displayed against human cells by MVMp and its rat homolog H-1PV also depends on antiviral mechanisms and to identify the pattern recognition receptor (PRR) involved. Despite their low proliferation rate which represents a drawback for parvovirus multiplication, we used human peripheral blood mononuclear cells (hPBMCs) as normal model specifically because all known PRRs are functional in this mixed cell population and moreover because some of its subsets are among the main IFN producers upon infections in mammals. Human transformed models consisted in lines and tumor cells more or less permissive to both parvoviruses. Our results show that irrespective of their permissiveness, transformed cells do not produce IFNs nor develop an antiviral response upon parvovirus infection. However, MVMp- or H-1PV-infected hPBMCs trigger such defense mechanisms despite an absence of parvovirus replication and protein expression, pointing to the viral genome as the activating element. Substantial reduction of an inhibitory oligodeoxynucleotide (iODN) of the latter IFN production identified TLR-9 as a potential PRR for parvoviruses in hPBMCs. However, neither the iODN treatment nor an antibody-induced neutralization of the IFN-triggered effects restored parvovirus multiplication in these cells as expected by their weak proliferation in culture. Finally, given that a TLR-9 activation could also not be observed in parvovirus-infected human lines reported to be endowed with a functional TLR-9 pathway (Namalwa, Raji, and HEK293-TLR9(+/+)), our data suggest that transformed human cells do not sense MVMp or H-1PV either because of an absence of PRR expression or an intrinsic, or virus-driven defect in the endosomal sensing of the parvovirus genomes by TLR-9.


Subject(s)
Immunity, Innate , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/virology , Minute Virus of Mice/physiology , Toll-Like Receptor 9/metabolism , Animals , Cell Line, Tumor , Cell Transformation, Viral/immunology , Genome, Viral/genetics , HEK293 Cells , Humans , Interferon Type I/metabolism , Leukocytes, Mononuclear/metabolism , Mice , Minute Virus of Mice/genetics , Rats , Signal Transduction/immunology
6.
Oncoimmunology ; 1(8): 1417-1419, 2012 Nov 01.
Article in English | MEDLINE | ID: mdl-23243613

ABSTRACT

Oncolytic virotherapy represents a recent approach to anticancer therapy. Rodent autonomous parvoviruses (PVs) represent naturally oncolytic viruses that are non-pathogenic for humans but possess and extended tropism, being capable of infecting transformed cells of both rodent and human origin. Recent work from our group demonstrate that PVs can act as direct lytic agents and adjuvants, stimulating antitumor immune responses against glioma and pancreatic ductal adenocarcinoma (PDAC).

7.
Cancer Biol Ther ; 12(10): 888-95, 2011 Nov 15.
Article in English | MEDLINE | ID: mdl-22024742

ABSTRACT

Oncolytic viruses with their capacity to specifically replicate in and kill tumor cells emerged as a novel class of cancer therapeutics. Rat oncolytic parvovirus (H-1PV) was used to treat different types of cancer in preclinical settings and was lately successfully combined with standard gemcitabine chemotherapy in treating pancreatic ductal adenocarcinoma (PDAC) in rats. Our previous work showed that the immune system and particularly the release of interferon-gamma (IFNγ) seem to mediate the anticancer effect of H-1PV in that model. Therefore, we reasoned that the therapeutic properties of H-1PV can be boosted with IFNγ for the treatment of late incurable stages of PDAC like peritoneal carcinomatosis. Rats bearing established orthotopic pancreatic carcinomas with peritoneal metastases were treated with a single intratumoral (i.t.) or intraperitoneal (i.p.) injection of 5 x 108 plaque forming units of H-1PV with or without concomitant IFNγ application. Intratumoral injection proved to be more effective than the intraperitoneal route in controlling the growth of both the primary pancreatic tumors and peritoneal carcinomatosis, accompanied by migration of virus from primary to metastatic deposits. Concomitant i.p. treatment of H-1PV with recIFNγ resulted in improved therapeutic effect yielding an extended animal survival, compared with i.p. treatment with H-1PV alone. IFNγ application enhanced the H-1PV-induced peritoneal macrophage and splenocyte responses against tumor cells while causing a significant reduction in the titers of H1-PV-neutralising antibodies in ascitic fluid. Thus, IFNγ co-application together with H-1PV might be considered as a novel therapeutic option to improve the survival of PDAC patients with peritoneal carcinomatosis.


Subject(s)
Carcinoma, Pancreatic Ductal/therapy , H-1 parvovirus/genetics , Interferon-gamma/therapeutic use , Oncolytic Virotherapy/methods , Pancreatic Neoplasms/pathology , Peritoneal Neoplasms/therapy , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Ascitic Fluid/immunology , Carcinoma, Pancreatic Ductal/secondary , Cell Line, Tumor , Cytokines/biosynthesis , Genetic Therapy , Genetic Vectors/genetics , Humans , Immunity, Innate/immunology , Immunomodulation , Interferon-gamma/genetics , Macrophages/immunology , Pancreatic Neoplasms/therapy , Peritoneal Neoplasms/secondary , Rats , Rats, Inbred Lew
8.
J Oncol ; 2011: 741868, 2011.
Article in English | MEDLINE | ID: mdl-21785593

ABSTRACT

Accumulating evidence suggests an important role for cyclooxygenase-2 (COX-2) in the pathogenesis of a wide range of malignancies. The protumorigenic properties of COX-2 are generally thought to be mediated by its product, PGE(2), which is shown to promote tumor spread and growth by multiple mechanisms but most importantly through modulation of the local immune response in the tumor. Pancreatic tumor cells produce various amounts of PGE(2), some of them being even deficient in COX enzymes or other PGE(2) synthases. Here we describe that, beside pancreatic tumor cells or stromal fibroblasts, human peripheral blood mononuclear cells can also produce PGE(2) upon coculture with pancreatic cancer cells. Stimulating of cellular cPLA2 within PBMCs by secreted factors, presumably sPLA2, from tumor cells appeared crucial, while the direct contact between PBMCs and PDACs seemed to be dispensable for this effect. Our data is emphasizing the complex interactions participating in the formation of the tolerogenic immune milieu within pancreatic tumors.

9.
Mol Ther ; 17(7): 1164-72, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19367260

ABSTRACT

The incidence of lymphomas developing in both immunocompetent and immunosuppressed patients continues to steadily increase worldwide. Current chemotherapy and immunotherapy approaches have several limitations, such as severe side toxicity and selection of resistant cell variants. Autonomous parvoviruses (PVs), in particular the rat parvovirus H-1PV, have emerged as promising anticancer agents. Although it is apathogenic in humans, H-1PV has been shown to infect and suppress various rat and human tumors in animal models. In this study, we demonstrate the capacity of H-1PV for efficiently killing, through necrosis, cell cultures originating from Burkitt's lymphoma (BL), while sparing normal B lymphocytes. The cytotoxic effect was generally accompanied by a productive H-1PV infection. Remarkably, parvovirus-based monotherapy efficiently suppressed established BL at an advanced stage in a severe combined immunodeficient (SCID) mouse model of the disease. The data show for the first time that an oncolytic parvovirus deserves further consideration as a potential tool for the treatment of some non-Hodgkin B-cell lymphomas, including those resistant to apoptosis induction by rituximab.


Subject(s)
Lymphoma/therapy , Oncolytic Virotherapy/methods , Parvovirus/physiology , Animals , Cell Line, Tumor , Cells, Cultured , Humans , Lymphoma, B-Cell/therapy , Mice , Mice, SCID , Necrosis/virology , Parvovirus/genetics , Rats , Virus Replication/genetics
10.
Clin Cancer Res ; 15(2): 511-9, 2009 Jan 15.
Article in English | MEDLINE | ID: mdl-19147756

ABSTRACT

UNLABELLED: Pancreatic carcinoma is a gastrointestinal malignancy with poor prognosis. Treatment with gemcitabine, the most potent chemotherapeutic against this cancer up to date, is not curative, and resistance may appear. Complementary treatment with an oncolytic virus, such as the rat parvovirus H-1PV, which is infectious but nonpathogenic in humans, emerges as an innovative option. PURPOSE: To prove that combining gemcitabine and H-1PV in a model of pancreatic carcinoma may reduce the dosage of the toxic drug and/or improve the overall anticancer effect. EXPERIMENTAL DESIGN: Pancreatic tumors were implanted orthotopically in Lewis rats or subcutaneously in nude mice and treated with gemcitabine, H-1PV, or both according to different regimens. Tumor size was monitored by micro-computed tomography, whereas bone marrow, liver, and kidney functions were monitored by measuring clinically relevant markers. Human pancreatic cell lines and gemcitabine-resistant derivatives were tested in vitro for sensitivity to H-1PV infection with or without gemcitabine. RESULTS: In vitro studies proved that combining gemcitabine with H-1PV resulted in synergistic cytotoxic effects and achieved an up to 15-fold reduction in the 50% effective concentration of the drug, with drug-resistant cells remaining sensitive to virus killing. Toxicologic screening showed that H-1PV had an excellent safety profile when applied alone or in combination with gemcitabine. The benefits of applying H-1PV as a second-line treatment after gemcitabine included reduction of tumor growth, prolonged survival of the animals, and absence of metastases on CT-scans. CONCLUSION: In addition to their potential use as monotherapy for pancreatic cancer, parvoviruses can be best combined with gemcitabine in a two-step protocol.


Subject(s)
Carcinoma/drug therapy , Deoxycytidine/analogs & derivatives , Oncolytic Viruses/metabolism , Pancreatic Neoplasms/drug therapy , Parvovirus/metabolism , Animals , Antimetabolites, Antineoplastic/pharmacology , Carcinoma/therapy , Cell Line, Tumor , Deoxycytidine/pharmacology , Humans , Male , Mice , Mice, Nude , Neoplasm Transplantation , Pancreatic Neoplasms/therapy , Rats , Rats, Inbred Lew , Gemcitabine
SELECTION OF CITATIONS
SEARCH DETAIL
...