Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 11(11): e0165536, 2016.
Article in English | MEDLINE | ID: mdl-27880813

ABSTRACT

It is commonly assumed that perfusion in a given cerebral territory can be inferred from Blood Flow Velocity (BFV) measurements in the corresponding stem artery. In order to test this hypothesis, we construct a cerebral blood flow (CBF) estimator based on transcranial Doppler (TCD) blood flow velocity and ten other easily available patient characteristics and clinical parameters. A total of 261 measurements were collected from 88 older patients. The estimator is based on local regression (Random Forest). Its performance is analyzed against baseline CBF from 3-D pseudocontinuous arterial spin labeling (pCASL) magnetic resonance imaging (MRI). Patient specific CBF predictions are of poor quality (r = 0.41 and p-value = 4.5 × 10-12); the hypothesis is thus not clearly supported by evidence.


Subject(s)
Cerebrovascular Circulation/physiology , Models, Statistical , Ultrasonography, Doppler, Transcranial , Aged , Algorithms , Blood Flow Velocity/physiology , Cerebral Arteries/diagnostic imaging , Female , Humans , Magnetic Resonance Angiography , Male , Middle Aged
2.
J Biomech ; 49(9): 1583-1592, 2016 06 14.
Article in English | MEDLINE | ID: mdl-27062594

ABSTRACT

One-dimensional (1D) modeling is a widely adopted approach for studying wave propagation phenomena in the arterial system. Despite the frequent use of the Windkessel (WK) model to prescribe outflow boundary conditions for 1D arterial tree models, it remains unclear to what extent the inherent limitation of the WK model in describing wave propagation in distal vasculatures affect hemodynamic variables simulated at the arterial level. In the present study, a 1D model of the arterial tree was coupled respectively with a WK boundary model and a structured-tree (ST) boundary model, yielding two types of arterial tree models. The effective resistances, compliances and inductances of the WK and ST boundary models were matched to facilitate quantitative comparisons. Obtained results showed that pressure/flow waves simulated by the two models were comparable in the aorta, whereas, their discrepancies increased towards the periphery. Wave analysis revealed that the differences in reflected waves generated by the boundary models were the major sources of pressure wave discrepancies observed in large arteries. Additional simulations performed under aging conditions demonstrated that arterial stiffening with age enlarged the discrepancies, but with the effects being partly counteracted by physiological aortic dilatation with age. These findings suggest that the method adopted for modeling the outflow boundary conditions has considerable influence on the performance of a 1D arterial tree model, with the extent of influence varying with the properties of the arterial system.


Subject(s)
Arteries/physiology , Models, Cardiovascular , Blood Pressure , Hemodynamics , Humans
3.
Int J Numer Method Biomed Eng ; 30(11): 1294-313, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24954012

ABSTRACT

We discuss the implementation and calibration of a new generalized structured tree boundary condition for hemodynamics. The main idea is to approximate the impedance corresponding to the vessels downstream from a specific outlet. Unlike previous impedance conditions, the one considered here is applicable to general transient flows as opposed to periodic ones only. The physiological character of the approach significantly simplifies calibration. We also describe a novel way to incorporate autoregulation mechanisms in structured arterial trees at minimal computational cost. The strength of the approach is illustrated and validated on several examples through comparison with clinical data.


Subject(s)
Blood Vessels/physiology , Hemodynamics , Models, Cardiovascular , Algorithms , Aorta/physiology , Cerebral Arteries/physiology , Circle of Willis/physiology , Humans
4.
Multiscale Model Simul ; 7(2): 888-909, 2008 Jan 27.
Article in English | MEDLINE | ID: mdl-19043621

ABSTRACT

A numerical model based on one-dimensional balance laws and ad hoc zero-dimensional boundary conditions is tested against experimental data. The study concentrates on the circle of Willis, a vital subnetwork of the cerebral vasculature. The main goal is to obtain efficient and reliable numerical tools with predictive capabilities. The flow is assumed to obey the Navier-Stokes equations, while the mechanical reactions of the arterial walls follow a viscoelastic model. Like many previous studies, a dimension reduction is performed through averaging. Unlike most previous work, the resulting model is both calibrated and validated against in vivo data, more precisely transcranial Doppler data of cerebral blood velocity. The network considered has three inflow vessels and six outflow vessels. Inflow conditions come from the data, while outflow conditions are modeled. Parameters in the outflow conditions are calibrated using a subset of the data through ensemble Kalman filtering techniques. The rest of the data is used for validation. The results demonstrate the viability of the proposed approach.

5.
Phys Rev E Stat Nonlin Soft Matter Phys ; 76(5 Pt 1): 051303, 2007 Nov.
Article in English | MEDLINE | ID: mdl-18233648

ABSTRACT

We experimentally investigate the response to perturbations of circular symmetry for dense granular flow inside a three-dimensional right-conical hopper. These experiments consist of particle tracking velocimetry for the flow at the outer boundary of the hopper. We are able to test commonly used constitutive relations and observe granular flow phenomena that we can model numerically. Unperturbed conical hopper flow has been described as a radial velocity field with no azimuthal component. Guided by numerical models based upon continuum descriptions, we find experimental evidence for secondary, azimuthal circulation in response to perturbation of the symmetry with respect to gravity by tilting. For small perturbations we can discriminate between constitutive relations, based upon the agreement between the numerical predictions they produce and our experimental results. We find that the secondary circulation can be suppressed as wall friction is varied, also in agreement with numerical predictions. For large tilt angles we observe the abrupt onset of circulation for parameters where circulation was previously suppressed. Finally, we observe that for large tilt angles the fluctuations in velocity grow, independent of the onset of circulation.

SELECTION OF CITATIONS
SEARCH DETAIL
...