Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ALTEX ; 41(1): 104-118, 2024 01 09.
Article in English | MEDLINE | ID: mdl-37843019

ABSTRACT

Difficult to test substances, including poorly soluble, mildly irritating, or UVCBs (unknown or variable composition complex reaction products or biological materials), producing weak or borderline in vivo results, face additional challenges in in vitro assays that often necessitate data integration in a weight of evidence (WOE) approach to inform skin sensitization potential. Here we present several case studies on difficult to test substances and highlight the utility of the toxicological priority index (ToxPi) as a data visualization tool to compare skin sensitization biological activity. The case study test substances represent two poorly soluble substances, tetrakis (2-ethylbutyl) orthosilicate and decyl palmitate, and two UVCB substances, alkylated anisole and hydrazinecarboximidamide, 2-[(2-hydroxyphenyl)methylene]-, reaction products with 2 undecanone. Data from key events within the skin sensitization adverse outcome pathway were gathered from publicly available sources or specifically generated. Incorporating the data for these case study test substances as well as data on chemicals of a known sensitization class (sensitizer, irritating non-sensitizer, and non-sensitizer) into ToxPi produced biological activity profiles which were grouped using unsupervised hierarchical clustering. Three of the case study test substances concluded to lack skin sensitization potential by traditional WOE produced biological activity profiles most consistent with non-sensi­tizing substances, whereas the prediction was less definitive for a substance considered positive by traditional WOE. Visualizing the data using bioactivity profiles can provide further support for WOE conclusions in certain circumstances but is unlikely to replace WOE as a stand-alone prediction due to limitations of the method including the impact of missing data points.


Non-animal test methods to detect chemicals that cause skin allergies are accepted alternatives to animal testing for this purpose. However, some chemicals are difficult to test using these methods, e.g., substances that cause skin irritation, are not water soluble or are mixtures of different compo­nents. We compiled existing and new data on how four such chemicals activate key elements of the biological pathway leading to allergic skin reactions and compared the resulting patterns with respective patterns of many chemicals confirmed to cause skin allergy, skin irritation or neither. The patterns were visualized and analyzed with a computer software tool. The tool confirmed that three substances were non-sensitizers but did not confirm that the fourth substance was a skin sensitizer as predicted by the standard assessment. This approach, which incorporates all available data types into the assessment of difficult to test chemicals, may further reduce unnecessary animal testing.


Subject(s)
Adverse Outcome Pathways , Dermatitis, Allergic Contact , Humans , Skin , Local Lymph Node Assay
2.
ASN Neuro ; 7(1)2015.
Article in English | MEDLINE | ID: mdl-25732706

ABSTRACT

The deleterious effects of anemia on auditory nerve (AN) development have been well investigated; however, we have previously reported that significant functional consequences in the auditory brainstem response (ABR) can also occur as a consequence of marginal iron deficiency (ID). As the ABR has widespread clinical use, we evaluated the ability of this electrophysiological method to characterize the threshold of tissue ID in rats by examining the relationship between markers of tissue ID and severity of ABR latency defects. To generate various levels of ID, female Long-Evans rats were exposed to diets containing sufficient, borderline, or deficient iron (Fe) concentrations throughout gestation and offspring lifetime. We measured hematological indices of whole body iron stores in dams and offspring to assess the degree of ID. Progression of AN ID in the offspring was measured as ferritin protein levels at different times during postnatal development to complement ABR functional measurements. The severity of ABR deficits correlated with the level of Fe restriction in each diet. The sufficient Fe diet did not induce AN ID and consequently did not show an impaired ABR latency response. The borderline Fe diet, which depleted AN Fe stores but did not cause systemic anemia resulted in significantly increased ABR latency isolated to Peak I.The low Fe diet, which induced anemia and growth retardation, significantly increased ABR latencies of Peaks I to IV. Our findings indicate that changes in the ABR could be related to various degrees of ID experienced throughout development.


Subject(s)
Anemia, Iron-Deficiency/pathology , Brain Stem/physiopathology , Evoked Potentials, Auditory, Brain Stem/physiology , Iron Deficiencies , Prenatal Exposure Delayed Effects/physiopathology , Acoustic Stimulation , Age Factors , Anemia, Iron-Deficiency/etiology , Animals , Animals, Newborn , Disease Models, Animal , Female , Ferritins/metabolism , Hematocrit , Hemoglobins/metabolism , Iron, Dietary/metabolism , Male , Pregnancy , Prenatal Exposure Delayed Effects/etiology , Rats , Rats, Long-Evans , Reaction Time
3.
J Nutr ; 144(7): 1058-66, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24744313

ABSTRACT

Gestational iron deficiency (ID) has been associated with a wide variety of central nervous system (CNS) impairments in developing offspring. However, a focus on singular regions has impeded an understanding of the CNS-wide effects of this micronutrient deficiency. Because the developing brain requires iron during specific phases of growth in a region-specific manner, we hypothesized that maternal iron deprivation would lead to region-specific impairments in the CNS of offspring. Female rats were fed an iron control (Fe+) or iron-deficient (Fe-) diet containing 240 or 6 µg/g iron during gestation and lactation. The corpus callosum (CC), hippocampus, and cortex of the offspring were analyzed at postnatal day 21 (P21) and/or P40 using structural and functional measures. In the CC at P40, ID was associated with reduced peak amplitudes of compound action potentials specific to myelinated axons, in which diameters were reduced by ∼20% compared with Fe+ controls. In the hippocampus, ID was associated with a 25% reduction in basal dendritic length of pyramidal neurons at P21, whereas branching complexity was unaffected. We also identified a shift toward increased proximal branching of apical dendrites in ID without an effect on overall length compared with Fe+ controls. ID also affected cortical neurons, but unlike the hippocampus, both apical and basal dendrites displayed a uniform decrease in branching complexity, with no significant effect on overall length. These deficits culminated in significantly poorer performance of P40 Fe- offspring in the novel object recognition task. Collectively, these results demonstrate that non-anemic gestational ID has a significant and region-specific impact on neuronal development and may provide a framework for understanding and recognizing the presentation of clinical symptoms of ID.


Subject(s)
Brain Damage, Chronic/etiology , Cerebral Cortex/diagnostic imaging , Corpus Callosum/diagnostic imaging , Iron Deficiencies , Lactation , Maternal Nutritional Physiological Phenomena , Neurons/diagnostic imaging , Animals , Axons/metabolism , Axons/ultrastructure , Brain Damage, Chronic/congenital , Brain Damage, Chronic/metabolism , Brain Damage, Chronic/pathology , Cerebral Cortex/metabolism , Corpus Callosum/metabolism , Dendrites/metabolism , Dendrites/ultrastructure , Female , Hippocampus/diagnostic imaging , Hippocampus/metabolism , Male , Nerve Fibers, Myelinated/diagnostic imaging , Nerve Fibers, Myelinated/metabolism , Neurogenesis , Neurons/metabolism , Pregnancy , Pyramidal Cells/diagnostic imaging , Pyramidal Cells/metabolism , Random Allocation , Rats , Rats, Inbred F344 , Reproducibility of Results , Ultrasonography
SELECTION OF CITATIONS
SEARCH DETAIL
...