Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 21(8)2021 Apr 14.
Article in English | MEDLINE | ID: mdl-33919700

ABSTRACT

This perspective presents an overview of approaches to the preparation of molecular recognition agents for chemical sensing. These approaches include chemical synthesis, using catalysts from biological systems, partitioning, aptamers, antibodies and molecularly imprinted polymers. The latter three approaches are general in that they can be applied with a large number of analytes, both proteins and smaller molecules like drugs and hormones. Aptamers and antibodies bind analytes rapidly while molecularly imprinted polymers bind much more slowly. Most molecularly imprinted polymers, formed by polymerizing in the presence of a template, contain a high level of covalent crosslinker that causes the polymer to form a separate phase. This results in a material that is rigid with low affinity for analyte and slow binding kinetics. Our approach to templating is to use predominantly or exclusively noncovalent crosslinks. This results in soluble templated polymers that bind analyte rapidly with high affinity. The biggest challenge of this approach is that the chains are tangled when the templated polymer is dissolved in water, blocking access to binding sites.


Subject(s)
Molecular Imprinting , Binding Sites , Catalysis , Polymers , Proteins
2.
Sensors (Basel) ; 18(5)2018 Apr 25.
Article in English | MEDLINE | ID: mdl-29693601

ABSTRACT

A new type of biomimetic templated copolymer has been prepared by reverse addition fragmentation chain transfer polymerization (RAFT) in dioxane. The initial formulation includes the template fluorescein, N-isopropylacrylamide (NIPAM, 84 mol %), methacrylic acid (MAA, 5-mol %), 4-vinylpyridine (4-VP, 9 mmol %), and N,N′-methylenebis(acrylamide) (MBA, 2 mol %). PolyNIPAM is a thermosensitive polymer that comes out of aqueous solution above its lower critical solution temperature forming hydrophobic ‘crosslinks’. MAA and 4-VP interact in dioxane forming acid⁻base crosslinks. The excess 4-VP serves as a recognition monomer organizing around the template fluorescein to form a binding site that is held in place by the noncovalent and covalent crosslinks. The MBA is a covalent crosslinker. The RAFT agent in the resulting copolylmer was reduced to a thiol and attached to gold nanoparticles. The gold nanoparticle bound copolymer binds fluorescein completely in less than two seconds with an affinity constant greater than 108 M−1. A reference copolymer prepared with the same monomers by the same procedure binds fluorescein much more weakly.

SELECTION OF CITATIONS
SEARCH DETAIL
...