Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Vis ; 24(5): 16, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38819806

ABSTRACT

Multistable perception occurs in all sensory modalities, and there is ongoing theoretical debate about whether there are overarching mechanisms driving multistability across modalities. Here we study whether multistable percepts are coupled across vision and audition on a moment-by-moment basis. To assess perception simultaneously for both modalities without provoking a dual-task situation, we query auditory perception by direct report, while measuring visual perception indirectly via eye movements. A support-vector-machine (SVM)-based classifier allows us to decode visual perception from the eye-tracking data on a moment-by-moment basis. For each timepoint, we compare visual percept (SVM output) and auditory percept (report) and quantify the co-occurrence of integrated (one-object) or segregated (two-objects) interpretations in the two modalities. Our results show an above-chance coupling of auditory and visual perceptual interpretations. By titrating stimulus parameters toward an approximately symmetric distribution of integrated and segregated percepts for each modality and individual, we minimize the amount of coupling expected by chance. Because of the nature of our task, we can rule out that the coupling stems from postperceptual levels (i.e., decision or response interference). Our results thus indicate moment-by-moment perceptual coupling in the resolution of visual and auditory multistability, lending support to theories that postulate joint mechanisms for multistable perception across the senses.


Subject(s)
Auditory Perception , Photic Stimulation , Visual Perception , Humans , Auditory Perception/physiology , Visual Perception/physiology , Adult , Male , Female , Photic Stimulation/methods , Young Adult , Eye Movements/physiology , Acoustic Stimulation/methods
2.
Noise Health ; 24(115): 199-214, 2022.
Article in English | MEDLINE | ID: mdl-36537445

ABSTRACT

Noise is present in most work environments, including emissions from machines and devices, irrelevant speech from colleagues, and traffic noise. Although it is generally accepted that noise below the permissible exposure limits does not pose a considerable risk for auditory effects like hearing impairments. Yet, noise can have a direct adverse effect on cognitive performance (non-auditory effects like workload or stress). Under certain circumstances, the observable performance for a task carried out in silence compared to noisy surroundings may not differ. One possible explanation for this phenomenon needs further investigation: individuals may invest additional cognitive resources to overcome the distraction from irrelevant auditory stimulation. Recent developments in measurements of psychophysiological correlates and analysis methods of load-related parameters can shed light on this complex interaction. These objective measurements complement subjective self-report of perceived effort by quantifying unnoticed noise-related cognitive workload. In this review, literature databases were searched for peer-reviewed journal articles that deal with an at least partially irrelevant "auditory stimulation" during an ongoing "cognitive task" that is accompanied by "psychophysiological correlates" to quantify the "momentary workload." The spectrum of assessed types of "auditory stimulations" extended from speech stimuli (varying intelligibility), oddball sounds (repeating short tone sequences), and auditory stressors (white noise, task-irrelevant real-life sounds). The type of "auditory stimulation" was related (speech stimuli) or unrelated (oddball, auditory stressor) to the type of primary "cognitive task." The types of "cognitive tasks" include speech-related tasks, fundamental psychological assessment tasks, and real-world/simulated tasks. The "psychophysiological correlates" include pupillometry and eye-tracking, recordings of brain activity (hemodynamic, potentials), cardiovascular markers, skin conductance, endocrinological markers, and behavioral markers. The prevention of negative effects on health by unexpected stressful soundscapes during mental work starts with the continuous estimation of cognitive workload triggered by auditory noise. This review gives a comprehensive overview of methods that were tested for their sensitivity as markers of workload in various auditory settings during cognitive processing.


Subject(s)
Hearing Loss , Speech Perception , Humans , Speech Perception/physiology , Noise/adverse effects , Acoustic Stimulation/methods , Cognition/physiology
3.
PLoS One ; 16(6): e0252370, 2021.
Article in English | MEDLINE | ID: mdl-34086770

ABSTRACT

In multistability, a constant stimulus induces alternating perceptual interpretations. For many forms of visual multistability, the transition from one interpretation to another ("perceptual switch") is accompanied by a dilation of the pupil. Here we ask whether the same holds for auditory multistability, specifically auditory streaming. Two tones were played in alternation, yielding four distinct interpretations: the tones can be perceived as one integrated percept (single sound source), or as segregated with either tone or both tones in the foreground. We found that the pupil dilates significantly around the time a perceptual switch is reported ("multistable condition"). When participants instead responded to actual stimulus changes that closely mimicked the multistable perceptual experience ("replay condition"), the pupil dilated more around such responses than in multistability. This still held when data were corrected for the pupil response to the stimulus change as such. Hence, active responses to an exogeneous stimulus change trigger a stronger or temporally more confined pupil dilation than responses to an endogenous perceptual switch. In another condition, participants randomly pressed the buttons used for reporting multistability. In Study 1, this "random condition" failed to sufficiently mimic the temporal pattern of multistability. By adapting the instructions, in Study 2 we obtained a response pattern more similar to the multistable condition. In this case, the pupil dilated significantly around the random button presses. Albeit numerically smaller, this pupil response was not significantly different from the multistable condition. While there are several possible explanations-related, e.g., to the decision to respond-this underlines the difficulty to isolate a purely perceptual effect in multistability. Our data extend previous findings from visual to auditory multistability. They highlight methodological challenges in interpreting such data and suggest possible approaches to meet them, including a novel stimulus to simulate the experience of perceptual switches in auditory streaming.


Subject(s)
Auditory Perception/physiology , Acoustic Stimulation/methods , Adult , Female , Humans , Male , Pupil/physiology , Sound , Visual Perception/physiology
4.
Vision Res ; 182: 69-88, 2021 05.
Article in English | MEDLINE | ID: mdl-33610002

ABSTRACT

In multistability, perceptual interpretations ("percepts") of ambiguous stimuli alternate over time. There is considerable debate as to whether similar regularities govern the first percept after stimulus onset and percepts during prolonged presentation. We address this question in a visual pattern-component rivalry paradigm by presenting two overlaid drifting gratings, which participants perceived as individual gratings passing in front of each other ("segregated") or as a plaid ("integrated"). We varied the enclosed angle ("opening angle") between the gratings (experiments 1 and 2) and stimulus orientation (experiment 2). The relative number of integrated percepts increased monotonically with opening angle. The point of equality, where half of the percepts were integrated, was at a smaller opening angle at onset than during prolonged viewing. The functional dependence of the relative number of integrated percepts on opening angle showed a steeper curve at onset than during prolonged viewing. Dominance durations of integrated percepts were longer at onset than during prolonged viewing and increased with opening angle. The general pattern persisted when stimuli were rotated (experiment 2), despite some perceptual preference for cardinal motion directions over oblique directions. Analysis of eye movements, specifically the slow phase of the optokinetic nystagmus (OKN), confirmed the veridicality of participants' reports and provided a temporal characterization of percept formation after stimulus onset. Together, our results show that the first percept after stimulus onset exhibits a different dependence on stimulus parameters than percepts during prolonged viewing. This underlines the distinct role of the first percept in multistability.


Subject(s)
Nystagmus, Optokinetic , Vision, Binocular , Humans , Photic Stimulation
SELECTION OF CITATIONS
SEARCH DETAIL
...