Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Chem Biol ; 25(6): 705-717.e11, 2018 06 21.
Article in English | MEDLINE | ID: mdl-29628435

ABSTRACT

Activating KRAS mutations are major oncogenic drivers in multiple tumor types. Synthetic lethal screens have previously been used to identify targets critical for the survival of KRAS mutant cells, but their application to drug discovery has proven challenging, possibly due in part to a failure of monolayer cultures to model tumor biology. Here, we report the results of a high-throughput synthetic lethal screen for small molecules that selectively inhibit the growth of KRAS mutant cell lines in soft agar. Chemoproteomic profiling identifies the target of the most KRAS-selective chemical series as dihydroorotate dehydrogenase (DHODH). DHODH inhibition is shown to perturb multiple metabolic pathways. In vivo preclinical studies demonstrate strong antitumor activity upon DHODH inhibition in a pancreatic tumor xenograft model.


Subject(s)
Oxidoreductases Acting on CH-CH Group Donors/metabolism , Pancreatic Neoplasms/drug therapy , Proto-Oncogene Proteins p21(ras)/metabolism , Pyrimidines/metabolism , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Proliferation/drug effects , Dihydroorotate Dehydrogenase , Drug Screening Assays, Antitumor , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Female , Humans , Mice , Mice, SCID , Mutation , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Oxidoreductases Acting on CH-CH Group Donors/antagonists & inhibitors , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , Proto-Oncogene Proteins p21(ras)/genetics , Pyrimidines/chemistry , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Tumor Cells, Cultured
2.
Bioorg Med Chem Lett ; 26(2): 454-459, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26681511

ABSTRACT

A new series of pyrazolo[1,5-a]pyrimidines exemplified by compound 1, has been identified with moderate activity (IC50=165nM), following GSK256066 rescaffolding. Compound 1 optimization at positions 2, 3, 6 and 7 gave compound 10 with high in vitro activity (IC50=0.7nM). Modeling studies based on the PDB structure 3GWT with compound 5 showed the expected overlay with the carboxamide, the aryl moiety and the sulfone. Cyclisation of the primary amide to the 5 position of the pyrazolo[1,5-a]pyrimidines scaffold afforded compounds 15 and 16 with 200-fold enhancement in activity and cellular potency.


Subject(s)
Phosphodiesterase 4 Inhibitors/pharmacology , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Aminoquinolines/chemistry , Cell Line, Tumor , Cyclic AMP/biosynthesis , Humans , Models, Molecular , Phosphodiesterase 4 Inhibitors/chemical synthesis , Pyrazoles/chemical synthesis , Pyrimidines/chemical synthesis , Structure-Activity Relationship , Sulfones/chemical synthesis , Sulfones/chemistry , Sulfones/pharmacology
3.
Hum Mol Genet ; 24(14): 3939-47, 2015 Jul 15.
Article in English | MEDLINE | ID: mdl-25901007

ABSTRACT

We have previously shown that the deletion of the dystrophin Dp71 gene induces a highly permeable blood-retinal barrier (BRB). Given that BRB breakdown is involved in retinal inflammation and the pathophysiology of many blinding eye diseases, here we investigated whether the absence of Dp71 brings out retinal vascular inflammation and vessel loss by using specific Dp71-null mice. The expression of vascular endothelial growth factor (VEGF), quantified by quantitative polymerase chain reaction and enzyme-linked immunosorbent assay methods, was higher in the retina of Dp71-null mice than in wild-type mice. In contrast, no differences were observed in VEGFR-2 and tumor necrosis factor-α expression. Moreover, mRNA expression of water channel, aquaporin 4 (AQP4) was increased after Dp71 deletion. The Dp71 deletion was also associated with the overexpression of intercellular adhesion molecule 1, which is expressed on endothelial cells surface to recruit leukocytes. Consistent with these findings, the total number of adherent leukocytes per retina, assessed after perfusion with fluorescein isothiocyanate-conjugated concanavalin A, was increased in the absence of Dp71. Finally, a significant increase in capillary degeneration quantified after retinal trypsin digestion was observed in mice lacking Dp71. These data illustrate for the first time that the deletion of Dp71 was associated with retinal vascular inflammation, vascular lesions with increased leukocyte adhesion and capillary degeneration. Thus, dystrophin Dp71 could play a critical role in retinal vascular inflammation disease, and therefore represent a potential therapeutic target.


Subject(s)
Dystrophin/genetics , Gene Deletion , Inflammation/genetics , Retina/pathology , Animals , Aquaporin 4/genetics , Aquaporin 4/metabolism , Blood-Retinal Barrier , Caspase 3/genetics , Caspase 3/metabolism , Enzyme-Linked Immunosorbent Assay , Glial Fibrillary Acidic Protein , Inflammation/pathology , Intercellular Adhesion Molecule-1/genetics , Intercellular Adhesion Molecule-1/metabolism , Leukocytes/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Retinal Diseases/genetics , Signal Transduction , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-2/genetics , Vascular Endothelial Growth Factor Receptor-2/metabolism , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/metabolism
4.
J Med Chem ; 54(20): 7206-19, 2011 Oct 27.
Article in English | MEDLINE | ID: mdl-21972823

ABSTRACT

A novel class of heat shock protein 90 (Hsp90) inhibitors was developed after a low throughput screen (LTS) of a focused library containing approximately 21K compounds selected by virtual screening. The initial [1-{3-H-imidazo[4-5-c]pyridin-2-yl}-3,4-dihydro-2H-pyrido[2,1-a]isoindole-6-one] (1) compound showed moderate activity (IC(50) = 7.6 µM on Hsp82, the yeast homologue of Hsp90). A high-resolution X-ray structure shows that compound 1 binds into an "induced" hydrophobic pocket, 10-15 Å away from the ATP/resorcinol binding site. Iterative cycles of structure-based drug design (SBDD) and chemical synthesis led to the design and preparation of analogues with improved affinity. These optimized molecules make productive interactions within the ATP binding site as reported by other Hsp90 inhibitors. This resulted in compound 8, which is a highly potent inhibitor in biochemical and cellular assays (K(d) = 0.35 nM on Hsp90; IC(50) = 30 nM on SKBr3 mammary carcinoma cells) and in an in vivo leukemia model.


Subject(s)
Antineoplastic Agents/chemical synthesis , Fluorenes/chemical synthesis , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Heterocyclic Compounds, 3-Ring/chemical synthesis , Imidazoles/chemical synthesis , Pyridines/chemical synthesis , Adenosine Triphosphate/chemistry , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Binding Sites , Cell Line, Tumor , Crystallography, X-Ray , Drug Screening Assays, Antitumor , Fluorenes/chemistry , Fluorenes/pharmacology , Heterocyclic Compounds, 3-Ring/chemistry , Heterocyclic Compounds, 3-Ring/pharmacology , Humans , Imidazoles/chemistry , Imidazoles/pharmacology , Leukemia/drug therapy , Mice , Models, Molecular , Protein Binding , Pyridines/chemistry , Pyridines/pharmacology , Stereoisomerism , Structure-Activity Relationship
5.
Assay Drug Dev Technol ; 2(6): 637-46, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15674022

ABSTRACT

Pheochromocytoma-12 (PC12) cells recapitulate the program of neuronal differentiation by developing neurites after about 12 days of nerve growth factor (NGF) treatment. This model can be used to evaluate the neuroprotective/neurotrophic effect of compounds. Specific mRNAs such as cfos and c-jun are early biomarkers of the irreversible commitment into the differentiation program as they appear after only 30-40 min of NGF treatment. Monitoring the level of these mRNAs instead of the neurite outgrowth dramatically reduces the time needed to identify the drug potential of compounds. The electrophoretic tags, or eTag reporters (ACLARA Biosciences, Inc., Mountain View, CA), are a new class of fluorescent reporters that have unique migration properties in capillary electrophoresis, which allows for their separation and identification. (The eTag Multiplex Invader Assay and products incorporate Invader technology and Cleavase enzyme licensed for use from Third Wave Technologies, Inc. [Madison, WI] for multiplexed gene expression applications.) Each eTag molecule used begins as a phosphoramidite that is incorporated into a specific oligonucleotide using standard oligonucleotide synthesis procedures. A set of distinct probes labeled with different eTag molecules can then be mixed together to simultaneously quantify the levels of different mRNAs from the same sample. When compared to existing methods for measuring multiplexed gene expression from the same sample, the eTag assay allows a direct quantification of the mRNA from cells without any extraction/purification and still provides multiplexing capability, high sensitivity, miniaturization, and reproducibility compatible with medium-throughput screening methods. The eTag technology was used to simultaneously measure the level of expression of four mRNAs-c-fos, c-jun, c-myc, and gapdh-in NGF-treated PC12 cells in a standard 96-well format. The experimental data shown here demonstrate the use of eTag technology as a new screening tool, which uniquely combines robustness, sensitivity, multiplexing capability, and direct measurement of mRNA without any sample preparation steps, such as RNA extraction/purification or a reverse transcription step.


Subject(s)
Nerve Growth Factors/pharmacology , RNA, Messenger/biosynthesis , Animals , Biomarkers , Cell Differentiation , Cytological Techniques , Dose-Response Relationship, Drug , Electrophoresis , Genes, fos/genetics , Genes, jun/drug effects , Genes, myc/genetics , Glyceraldehyde-3-Phosphate Dehydrogenases/biosynthesis , Glyceraldehyde-3-Phosphate Dehydrogenases/genetics , Humans , Kinetics , Oligonucleotides/pharmacology , PC12 Cells , RNA, Messenger/analysis , Rats , Reproducibility of Results , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...