Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
Add more filters










Publication year range
1.
Dalton Trans ; 53(25): 10553-10562, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38847020

ABSTRACT

Bismuth(III) complexes have been reported to act as inhibitors of the enzyme urease, ubiquitously present in soils and implicated in the pathogenesis of several microorganisms. The general insolubility of Bi(III) complexes in water at neutral pH, however, is an obstacle to their utilization. In our quest to improve the solubility of Bi(III) complexes, we selected a compound reported to inhibit urease, namely [Bi(HEDTA)]·2H2O, and co-crystallized it with (i) racemic DL-histidine to obtain the conglomerate [Bi2(HEDTA)2(µ-D-His)2]·6H2O + [Bi2(HEDTA)2(µ-L-His)2]·6H2O, (ii) enantiopure L-histidine to yield [Bi2(HEDTA)2(µ-L-His)2]·6H2O, and (iii) cytosine to obtain [Bi(HEDTA)]·Cyt·2H2O. All compounds, synthesised by mechanochemical methods and by slurry, were characterized in the solid state by calorimetric (DSC and TGA) and spectroscopic (IR) methods, and their structures were determined using powder X-ray diffraction (PXRD) data. All compounds show an appreciable solubility in water, with values ranging from 6.8 mg mL-1 for the starting compound [Bi(HEDTA)]·2H2O to 36 mg mL-1 for [Bi2(HEDTA)2(µ-L-His)2]·6H2O. The three synthesized compounds as well as [Bi(HEDTA)]·2H2O were then tested for inhibition activity against urease. Surprisingly, no enzymatic inhibition was observed during in vitro assays using Canavalia ensiformis urease and in vivo assays using cultures of Helicobacter pylori, raising questions on the efficacy of Bi(III) compounds to counteract the negative effects of urease activity in the agro-environment and in human health.


Subject(s)
Bismuth , Enzyme Inhibitors , Solubility , Urease , Bismuth/chemistry , Urease/antagonists & inhibitors , Urease/metabolism , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemical synthesis , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Coordination Complexes/chemical synthesis , Agrochemicals/pharmacology , Agrochemicals/chemistry
2.
Pharmaceutics ; 16(2)2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38399257

ABSTRACT

In this paper, we address the problem of antimicrobial resistance in the case of Helicobacter pylori with a crystal engineering approach. Two antibiotics of the fluoroquinolone class, namely, levofloxacin (LEV) and ciprofloxacin (CIP), have been co-crystallized with the flavonoids quercetin (QUE), myricetin (MYR), and hesperetin (HES), resulting in the formation of four co-crystals, namely, LEV∙QUE, LEV∙MYR, LEV2∙HES, and CIP∙QUE. The co-crystals were obtained from solution, slurry, or mechanochemical mixing of the reactants. LEV∙QUE and LEV∙MYR were initially obtained as the ethanol solvates LEV∙QUE∙xEtOH and LEV∙MYR∙xEtOH, respectively, which upon thermal treatment yielded the unsolvated forms. All co-crystals were characterized by powder X-ray diffraction and thermal gravimetric analysis. The antibacterial performance of the four co-crystals LEV∙QUE, LEV∙MYR, LEV2∙HES, and CIP∙QUE in comparison with that of the physical mixtures of the separate components was tested via evaluation of the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC). The results obtained indicate that the association with the co-formers, whether co-crystallized or forming a physical mixture with the active pharmaceutical ingredients (API), enhances the antimicrobial activity of the fluoroquinolones, allowing them to significantly reduce the amount of API otherwise required to display the same activity against H. pylori.

3.
Cryst Growth Des ; 23(3): 1874-1887, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36879772

ABSTRACT

The possibility of obtaining cocrystals of kojic acid with organic coformers has been investigated by both computational and experimental approaches. Cocrystallization attempts have been carried out with about 50 coformers, in different stoichiometric ratios, by solution, slurry, and mechanochemical methods. Cocrystals were obtained with 3-hydroxybenzoic acid, imidazole, 4-pyridone, DABCO, and urotropine, while piperazine yielded a salt with the kojiate anion; cocrystallization with theophylline and 4-aminopyridine resulted in stoichiometric crystalline complexes that could not be described with certainty as cocrystals or salts. In the cases of panthenol, nicotinamide, urea, and salicylic acid the eutectic systems with kojic acid were investigated via differential scanning calorimetry. In all other preparations the resulting materials were constituted of a mixture of the reactants. All compounds were investigated by powder X-ray diffraction; the five cocrystals and the salt were fully characterized via single crystal X-ray diffraction. The stability of the cocrystals and the intermolecular interactions in all characterized compounds have been investigated by computational methods based on the electronic structure and pairwise energy calculations, respectively.

4.
Int J Mol Sci ; 24(6)2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36982258

ABSTRACT

The antimicrobial activity of the novel coordination polymers obtained by co-crystallizing the amino acids arginine or histidine, as both enantiopure L and racemic DL forms, with the salts Cu(NO3)2 and AgNO3 has been investigated to explore the effect of chirality in the cases of enantiopure and racemic forms. The compounds [Cu·AA·(NO3)2]CPs and [Ag·AA·NO3]CPs (AA = L-Arg, DL-Arg, L-His, DL-His) were prepared by mechanochemical, slurry, and solution methods and characterized by X-ray single-crystal and powder diffraction in the cases of the copper coordination polymers, and by powder diffraction and by solid-state NMR spectroscopy in the cases of the silver compounds. The two pairs of coordination polymers, [Cu·L-Arg·(NO3)2·H2O]CP and [Cu·DL-Arg·(NO3)2·H2O]CP, and [Cu·L-Hys·(NO3)2·H2O]CP and [Cu·DL-His·(NO3)2·H2O]CP, have been shown to be isostructural in spite of the different chirality of the amino acid ligands. A similar structural analogy could be established for the silver complexes on the basis of SSNMR. The activity against the bacterial pathogens Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus was assessed by carrying out disk diffusion assays on lysogeny agar media showing that, while there is no significant effect arising from the use of enantiopure or chiral amino acids, the coordination polymers exert an appreciable antimicrobial activity comparable, when not superior, to that of the metal salts alone.


Subject(s)
Anti-Infective Agents , Coordination Complexes , Silver Nitrate/pharmacology , Histidine , Copper/pharmacology , Copper/chemistry , Polymers/pharmacology , Polymers/chemistry , Salts , Crystallography, X-Ray , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Arginine/pharmacology , Coordination Complexes/pharmacology , Coordination Complexes/chemistry
5.
Molecules ; 28(3)2023 Jan 27.
Article in English | MEDLINE | ID: mdl-36770910

ABSTRACT

Co-crystallization of kojic acid (HKA) with silver(I), copper(II), zinc(II), or gallium(III) salts yielded three 1D coordination polymers and one 0D complex in which kojic acid was present as a neutral or anionic terminal or bridging ligand. All reactions were conducted mechanochemically via ball milling and manual grinding, or via slurry. All solids were fully characterized via single-crystal and/or powder X-ray diffraction. As kojic acid is a mild antimicrobial compound that is widely used in cosmetics, and the metal cations possess antibacterial properties, their combinations were tested for potential antibacterial applications. The minimal inhibition concentrations (MICs) and minimal biocidal concentrations (MBCs) for all compounds were measured against standard strains of the bacteria P. aeruginosa, S. aureus, and E. coli. All compounds exerted appreciable antimicrobial activity in the order of silver, zinc, copper, and gallium complexes.


Subject(s)
Anti-Infective Agents , Coordination Complexes , Gallium , Zinc/chemistry , Copper/chemistry , Silver/pharmacology , Silver/chemistry , Gallium/pharmacology , Staphylococcus aureus , Escherichia coli , Crystallization , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Infective Agents/pharmacology , Acids , Coordination Complexes/pharmacology , Coordination Complexes/chemistry
6.
ACS Appl Bio Mater ; 5(9): 4203-4212, 2022 09 19.
Article in English | MEDLINE | ID: mdl-35970511

ABSTRACT

Here, we exploit our mechanochemical synthesis for co-crystallization of an organic antiseptic, proflavine, with metal-based antimicrobials (silver, copper, zinc, and gallium). Our previous studies have looked for general antimicrobial activity for the co-crystals: proflavine·AgNO3, proflavine·CuCl, ZnCl3[Proflavinium], [Proflavinium]2[ZnCl4]·H2O, and [Proflavinium]3[Ga(oxalate)3]·4H2O. Here, we explore and compare more precisely the bacteriostatic (minimal inhibitory concentrations) and antibiofilm (prevention of cell attachment and propagation) activities of the co-crystals. For this, we choose three prominent "ESKAPE" bacterial pathogens of Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus. The antimicrobial behavior of the co-crystals was compared to that of the separate components of the polycrystalline samples to ascertain whether the proflavine-metal complex association in the solid state provided effective antimicrobial performance. We were particularly interested to see if the co-crystals were effective in preventing bacteria from initiating and propagating the biofilm mode of growth, as this growth form provides high antimicrobial resistance properties. We found that for the planktonic lifestyle of growth of the three bacterial strains, different co-crystal formulations gave selectivity for best performance. For the biofilm state of growth, we see that the silver proflavine co-crystal has the best overall antibiofilm activity against all three organisms. However, other proflavine-metal co-crystals also show practical antimicrobial efficacy against E. coli and S. aureus. While not all proflavine-metal co-crystals demonstrated enhanced antimicrobial efficacy over their constituents alone, all possessed acceptable antimicrobial properties while trapped in the co-crystal form. We also demonstrate that the metal-proflavine crystals retain antimicrobial activity in storage. This work defines that co-crystallization of metal compounds and organic antimicrobials has a potential role in the quest for antimicrobials/antiseptics in the defense against bacteria in our antimicrobial resistance era.


Subject(s)
Anti-Infective Agents , Gallium , Zinc/pharmacology , Copper/pharmacology , Silver/pharmacology , Proflavine/pharmacology , Gallium/pharmacology , Salts/pharmacology , Staphylococcus aureus , Escherichia coli , Anti-Infective Agents/pharmacology , Bacteria , Biofilms
7.
Int J Mol Sci ; 23(16)2022 Aug 12.
Article in English | MEDLINE | ID: mdl-36012275

ABSTRACT

This review is aimed to provide to an "educated but non-expert" readership and an overview of the scientific, commercial, and ethical importance of investigating the crystalline forms (polymorphs, hydrates, and co-crystals) of active pharmaceutical ingredients (API). The existence of multiple crystal forms of an API is relevant not only for the selection of the best solid material to carry through the various stages of drug development, including the choice of dosage and of excipients suitable for drug development and marketing, but also in terms of intellectual property protection and/or extension. This is because the physico-chemical properties, such as solubility, dissolution rate, thermal stability, processability, etc., of the solid API may depend, sometimes dramatically, on the crystal form, with important implications on the drug's ultimate efficacy. This review will recount how the scientific community and the pharmaceutical industry learned from the catastrophic consequences of the appearance of new, more stable, and unsuspected crystal forms. The relevant aspects of hydrates, the most common pharmaceutical solid solvates, and of co-crystals, the association of two or more solid components in the same crystalline materials, will also be discussed. Examples will be provided of how to tackle multiple crystal forms with screening protocols and theoretical approaches, and ultimately how to turn into discovery and innovation the purposed preparation of new crystalline forms of an API.


Subject(s)
Excipients , Crystallization , Pharmaceutical Preparations , Solubility
8.
Dalton Trans ; 51(19): 7390-7400, 2022 May 17.
Article in English | MEDLINE | ID: mdl-35466980

ABSTRACT

This Perspective outlines the results obtained at the University of Bologna by applying crystal engineering strategies to develop nature inspired organic-inorganic materials to tackle challenges in the health and environment sectors. It is shown by means of a number of examples that co-crystallization of inorganic salts, such as alkali and transition metal halides, with organic compounds, such as amino acids, urea, thiourea and quaternary ammonium salts, can be successfully used for (i) chiral resolution and conglomerate formation from racemic compounds, (ii) inhibition of soil enzyme activity in order to reduce urea decomposition and environmental pollution, and (iii) preparation of novel agents to tackle antimicrobial resistance. All materials described in this Perspective have been obtained by mechanochemical solvent-free or slurry methods and characterized by solid state techniques. The fundamental idea is that a crystal engineering approach based on the choice of intermolecular interactions (coordination and hydrogen bonds) between organic and inorganic compounds allows obtaining materials with collective properties that are different, and often very much superior to those of the separate components. It is also demonstrated that the success of this strategy depends crucially on cross-disciplinary synergistic exchange with expert scientists in the areas of bioinorganics, microbiology, and chirality application-oriented developments of these novel materials.


Subject(s)
Organic Chemicals , Salts , Crystallization , Hydrogen Bonding , Urea
9.
Sci Rep ; 12(1): 3673, 2022 03 07.
Article in English | MEDLINE | ID: mdl-35256712

ABSTRACT

The use of the gallium oxalate complex [Ga(ox)3]3- as a building block in the formation of a drug-drug salt with the antimicrobial agent proflavine (PF) as its proflavinium cation (HPF+), namely [HPF]3[Ga(ox)3]·4H2O, is reported together with the preparation of the potassium salt K3[Ga(ox)3] and the novel dimeric gallium(III) salt K4[Ga2(ox)4(µ-OH)2]·2H2O. All compounds have been characterized by solid state methods, and their performance as antimicrobial agents has been evaluated by disk diffusion assay against the bacteria strains Pseudomonas aeruginosa ATCC27853, Staphylococcus aureus ATCC25923, and Escherichia coli ATCC25922. While the [HPF]3[Ga(ox)3]·4H2O drug-drug salt is effective against all three strains, the gallium oxalate salt K3[Ga(ox)3] showed impressive selectivity towards P. aeruginosa, with little to no antimicrobial activity against the other two organisms. This work presents novel breakthroughs towards Ga based antimicrobial agents.


Subject(s)
Gallium , Anti-Bacterial Agents/pharmacology , Escherichia coli , Gallium/pharmacology , Microbial Sensitivity Tests , Oxalates/pharmacology , Proflavine/pharmacology , Pseudomonas aeruginosa , Salts/pharmacology
10.
RSC Adv ; 10(4): 2146-2149, 2020 Jan 08.
Article in English | MEDLINE | ID: mdl-35494556

ABSTRACT

Co-crystallization of the antibacterial agents proflavine and methyl viologen with the inorganic salts CuCl, CuCl2 and AgNO3 results in enhanced antimicrobial activity with respect to the separate components.

11.
Chem Commun (Camb) ; 54(77): 10890-10892, 2018 Sep 25.
Article in English | MEDLINE | ID: mdl-30206604

ABSTRACT

Chiral resolution of racemic etiracetam was achieved via co-crystallization with ZnCl2. Depending on the amount of ZnCl2 either a stable racemic compound or a stable conglomerate can be obtained. Excess ZnCl2 triggers the quantitative conversion of the racemate into the conglomerate solid; this unprecedented behaviour was investigated through a racetam/ZnCl2/solvent phase diagram.

12.
Chemistry ; 24(56): 15059-15066, 2018 Oct 09.
Article in English | MEDLINE | ID: mdl-30011358

ABSTRACT

The order-disorder phase transition associated with the uprise of reorientational motion in (DABCOH2)2+ , in the supramolecular salts of general formula [1⋅(DABCOH2 )]X2 (where 1=12-crown-4, DABCO=1,4-diazabicyclo[2.2.2]octane, and X=Cl- or Br- ), has been investigated by variable temperature X-ray diffraction on single crystals and powder samples, as well as by DSC and solid-state NMR spectroscopy (SSNMR). The two compounds undergo a reversible phase change at 292 and 290 K, respectively. The two crystalline materials form solid solutions [1⋅(DABCOH2 )]Cl2x Br2(1-x) in the whole composition range (0 < x<1), with a decrease in the temperature of transition to a minimum of ca 280 K, corresponding to x=0.5. Activation energy values for the dynamic processes, evaluated by variable-temperature 13 C magic-angle spinning (MAS) SSNMR and line-shape analysis are ca. 50 kJ mol-1 in all cases. Combined diffraction and spectroscopic evidence has allowed the detection of a novel dynamic process for the (DABCOH2 )2+ dications, based on a room temperature precessional motion that is frozen out below the disorder-order transition; to the best of the authors' knowledge this phenomenon has never been observed before.

13.
Chemistry ; 24(48): 12564-12573, 2018 Aug 27.
Article in English | MEDLINE | ID: mdl-30024647

ABSTRACT

The preparation and characterization of a whole family of hydrated ionic co-crystals formed by both enantiopure l-proline and racemic dl-proline with LiX (X=Cl, Br, I) are reported. The chiral preference of the lithium cation for homochiral coordination, both in the formation of crystalline conglomerates (with Cl and Br) and racemates (with Cl and I), in which molecules of opposite chirality are confined to distinct crystal layers, is discussed. Dehydration processes for all hydrated crystals have also been investigated.

14.
Chem Commun (Camb) ; 54(55): 7637-7640, 2018 Jul 05.
Article in English | MEDLINE | ID: mdl-29931002

ABSTRACT

A smart ionic co-crystal of urea with KCl and ZnCl2 has been obtained in two polymorphic modifications via mechanochemical and solution methods and proven to be a very efficient urease inhibitor while, simultaneously, able to provide soil nutrients to complement N supply.


Subject(s)
Chlorides/chemistry , Fertilizers , Potassium Chloride/chemistry , Urea/chemistry , Urease/antagonists & inhibitors , Zinc Compounds/chemistry , Canavalia , Crystallization , Kinetics
15.
Dalton Trans ; 47(16): 5725-5733, 2018 Apr 24.
Article in English | MEDLINE | ID: mdl-29632941

ABSTRACT

The [4 + 4] photoreactivity of the anthracene derivative 9-(methylaminomethyl)anthracene (MAMA) has been investigated in solution, gel medium and in the solid state. While quantitative formation of the cyloaddition photoproduct was achieved upon irradiation at λ = 365 nm of ethanol solutions of MAMA, only partial and slow conversion was detected in gels of low molecular weight gelators, and solid-state reactivity was not observed due to the unfavourable relative orientation of the anthracene moieties in the crystal. In hexafluorophosphate, tetrafluoroborate and nitrate silver(i) complexes, however, 9-(methylaminomethyl)anthracene exhibits a more favourable mutual orientation for the aromatic fragments, and [4 + 4] photoreactivity resulted. All compounds were structurally characterized via single crystal and/or X-ray powder diffraction and by Raman spectroscopy; this last technique proved effective in detection of the photoproduct in all solid state complexes.

16.
IUCrJ ; 4(Pt 4): 369-379, 2017 Jul 01.
Article in English | MEDLINE | ID: mdl-28875024

ABSTRACT

The conceptual relationship between crystal reactivity, stability and meta-stability, solubility and morphology on the one hand and shape, charge distribution, chirality and distribution of functional groups over the molecular surfaces on the other hand is discussed, via a number of examples coming from three decades of research in the field of crystal engineering at the University of Bologna. The bottom-up preparation of mixed crystals, co-crystals and photoreactive materials starting from molecular building blocks across the borders of organic, organometallic and metalorganic chemistry is recounted.

17.
Inorg Chem ; 56(8): 4729-4739, 2017 Apr 17.
Article in English | MEDLINE | ID: mdl-28375619

ABSTRACT

We report the syntheses and the magnetic characterization of a new series of lanthanide complexes, in which the Ce, Nd, Gd, Dy, Er, and Yb derivatives show single-molecule magnet behavior. These complexes, named Ln(trenovan), where H3trenovan is tris(((3-methoxysalicylidene)amino)ethyl)amine, exhibit trigonal symmetry and the Ln(III) ion is heptacoordinated. Their molecular structure is then very similar to that of the previously reported Ln(trensal) series, where H3trensal is 2,2',2″-tris(salicylideneimino)triethylamine. This prompted us to use the spectroscopic and magnetic properties of the Ln(trensal) family (Ln = Nd, Tb, Dy, Ho, Er, and Tm) to obtain a set of crystal-field parameters to be used as starting point to determine the electronic structures and magnetic anisotropy of the analogous Ln(trenovan) complexes using the CONDON computational package. The obtained results were then used to discuss the electron paramagnetic resonance (EPR) and ac susceptibility results. As a whole, the obtained results indicate for this type of complexes single-molecule magnet behavior is not related to the presence of an anisotropy barrier, due to a charge distribution of the ligand around the lanthanoid, which results in highly mixed ground states in terms of MJ composition of the states. The crucial parameter in determining the slow relaxation of the magnetization is then rather the number of unpaired electrons (only Kramers ions showing in-field slow relaxation) than the shape of the charge distribution for different Ln(III).

18.
Chemistry ; 23(22): 5317-5329, 2017 Apr 19.
Article in English | MEDLINE | ID: mdl-28240437

ABSTRACT

N-Salicilideneanilines are among the most studied thermo- and photochromic systems in the solid state. Although thermochromism is a general property of crystalline N-salicilideneanilines, photochromism is known in a limited number of cases. As a method for the construction of thermo- and photo-responsive molecular architectures, the co-crystallisation of 1,2,4,5-tetrafluoro-3,6-diiodobenzene (I2F4) with three selected imines of o-vanillin, named 1, 2 and 3, obtained through a condensation reaction with 3-aminopyridine, 4-bromoaniline and 4-iodoaniline, respectively, is reported herein. All crystals and co-crystals have been characterised by means of solid-state complementary techniques (X-ray diffraction, solid-state NMR spectroscopy, absorption and emission spectroscopy). The role of halogen bonding and crystal packing in the optical and chromic properties of all solid materials is discussed. All solids exhibit thermochromic behaviour, and three of them (2, 22 ⋅I2F4 and 32 ⋅I2F4) are also photochromic. Imine derivative 3 crystallises in two different polymorphic forms (3 A and 3 B) and a solvate (3Solv ). The bromo and iodo derivatives, 2 and 3 B, are isomorphous and form isomorphous co-crystals with I2F4, but behave differently when exposed to UV light because only crystalline 2 is photochromic. Interestingly, the replacement of bromine with iodine seems to turn off the photochromism because crystalline 3 A and 3Solv , and even the 20.7 30.3 solid solution, do not manifest photochromic behaviour.

19.
Chem Commun (Camb) ; 52(9): 1899-902, 2016 Jan 31.
Article in English | MEDLINE | ID: mdl-26673406

ABSTRACT

A set of molecular salts with general formula [1H]nA·xH2O (1 = 4-amino-cinnamic acid, A(n-) = NO3(-), BF4(-), PF6(-), SO4(2-), x = 0, 1) was prepared and structurally characterized. [1H]Cl and [1H]2SO4·H2O(II) were found to undergo an SCSC stepwise [2+2] photodimerization, which was followed by X-ray diffraction; a kinetic analysis was performed on single crystals of both salts. In the case of [1H]Cl the photoreaction was also studied on polycrystalline materials.

20.
Nat Chem ; 7(8): 634-40, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26201739

ABSTRACT

The development of solid materials that can be reversibly interconverted by light between forms with different physico-chemical properties is of great interest for separation, catalysis, optoelectronics, holography, mechanical actuation and solar energy conversion. Here, we describe a series of shape-persistent azobenzene tetramers that form porous molecular crystals in their E-configuration, the porosity of which can be tuned by changing the peripheral substituents on the molecule. Efficient E→Z photoisomerization of the azobenzene units takes place in the solid state and converts the crystals into a non-porous amorphous melt phase. Crystallinity and porosity are restored upon Z→E isomerization promoted by visible light irradiation or heating. We demonstrate that the photoisomerization enables reversible on/off switching of optical properties such as birefringence as well as the capture of CO2 from the gas phase. The linear design, structural versatility and synthetic accessibility make this new family of materials potentially interesting for technological applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...