Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Sci Data ; 11(1): 684, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918405

ABSTRACT

The transition from a milk-based diet to exclusive solid feeding deeply modifies microbiota-host crosstalk. Specifically, early ingestion of plant polysaccharides would be one of the main nutritional components to drive host-microbiota-interaction. To capture the effects of polysaccharides early-life nutrition (starch vs rapidly fermentable fiber) on the holobiont development, we investigated on the one hand the gut bacteriome and metabolome and on the other hand the transcriptome of two host gut tissues. Rabbit model was used to study post-natal co-development of the gut microbiota and its host around weaning transition. The assessment of the microbial composition of the gut appendix together with the caecum was provided for the first time. Gene expression signatures were analyzed along the gut (ileum and caecum) through high-throughput qPCR. The data collected were completed by the analysis of animal growth changes and time-series assessment of blood biomarkers. Those accessible and reusable data could help highlight the gut development dynamics as well as biological adaptation processes at the onset of solid feeding.


Subject(s)
Gastrointestinal Microbiome , Polysaccharides , Animals , Rabbits , Transcriptome , Cecum , Weaning , Metabolome , Multiomics
2.
BMC Genomics ; 25(1): 303, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38515025

ABSTRACT

BACKGROUND: A fine balance of feto-maternal resource allocation is required to support pregnancy, which depends on interactions between maternal and fetal genetic potential, maternal nutrition and environment, endometrial and placental functions. In particular, some imprinted genes have a role in regulating maternal-fetal nutrient exchange, but few have been documented in the endometrium. The aim of this study is to describe the expression of 42 genes, with parental expression, in the endometrium comparing two extreme breeds: Large White (LW); Meishan (MS) with contrasting neonatal mortality and maturity at two days of gestation (D90-D110). We investigated their potential contribution to fetal maturation exploring genes-fetal phenotypes relationships. Last, we hypothesized that the fetal genome and sex influence their endometrial expression. For this purpose, pure and reciprocally crossbred fetuses were produced using LW and MS breeds. Thus, in the same uterus, endometrial samples were associated with its purebred or crossbred fetuses. RESULTS: Among the 22 differentially expressed genes (DEGs), 14 DEGs were differentially regulated between the two days of gestation. More gestational changes were described in LW (11 DEGs) than in MS (2 DEGs). Nine DEGs were differentially regulated between the two extreme breeds, highlighting differences in the regulation of endometrial angiogenesis, nutrient transport and energy metabolism. We identified DEGs that showed high correlations with indicators of fetal maturation, such as ponderal index at D90 and fetal blood fructose level and placental weight at D110. We pointed out for the first time the influence of fetal sex and genome on endometrial expression at D90, highlighting AMPD3, CITED1 and H19 genes. We demonstrated that fetal sex affects the expression of five imprinted genes in LW endometrium. Fetal genome influenced the expression of four genes in LW endometrium but not in MS endometrium. Interestingly, both fetal sex and fetal genome interact to influence endometrial gene expression. CONCLUSIONS: These data provide evidence for some sexual dimorphism in the pregnant endometrium and for the contribution of the fetal genome to feto-maternal interactions at the end of gestation. They suggest that the paternal genome may contribute significantly to piglet survival, especially in crossbreeding production systems.


Subject(s)
Endometrium , Placenta , Pregnancy , Female , Animals , Swine , Placenta/metabolism , Endometrium/metabolism , Fetal Development/genetics , Uterus/physiology , Gene Expression
3.
Sci Rep ; 13(1): 7127, 2023 05 02.
Article in English | MEDLINE | ID: mdl-37130953

ABSTRACT

Together with environmental factors, physiological maturity at birth is a major determinant for neonatal survival and postnatal development in mammalian species. Maturity at birth is the outcome of complex mechanisms of intra-uterine development and maturation during the end of gestation. In pig production, piglet preweaning mortality averages 20% of the litter and thus, maturity is a major welfare and economic concern. Here, we used both targeted and untargeted metabolomic approaches to provide a deeper understanding of the maturity in a model of lines of pigs divergently selected on residual feed intake (RFI), previously shown to have contrasted signs of maturity at birth. Analyses were conducted on plasma metabolome of piglets at birth and integrated with other phenotypic characteristics associated to maturity. We confirmed proline and myo-inositol, previously described for their association with delayed growth, as potential markers of maturity. Urea cycle and energy metabolism were found more regulated in piglets from high and low RFI lines, respectively, suggesting a better thermoregulation ability for the low RFI (with higher feed efficiency) piglets.


Subject(s)
Amino Acids , Eating , Swine , Animals , Animals, Newborn , Proton Magnetic Resonance Spectroscopy , Eating/physiology , Energy Metabolism/physiology , Animal Feed/analysis , Mammals
4.
BMC Genomics ; 23(1): 823, 2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36510146

ABSTRACT

BACKGROUND: Embryonic and fetal development is very susceptible to the availability of nutrients that can interfere with the setting of epigenomes, thus modifying the main metabolic pathways and impacting the health and phenotypes of the future individual. We have previously reported that a 38% reduction of the methyl donor methionine in the diet of 30 female ducks reduced the body weight of their 180 mule ducklings compared to that of 190 ducklings from 30 control females. The maternal methionine-restricted diet also altered plasmatic parameters in 30 of their ducklings when compared to that of 30 ducklings from the control group. Thus, their plasma glucose and triglyceride concentrations were higher while their free fatty acid level and alanine transaminase activity were decreased. Moreover, the hepatic transcript level of 16 genes involved in pathways related to energy metabolism was significantly different between the two groups of ducklings. In the present work, we continued studying the liver of these newly hatched ducklings to explore the impact of the maternal dietary methionine restriction on the hepatic transcript level of 70 genes mostly involved in one-carbon metabolism and epigenetic mechanisms. RESULTS: Among the 12 genes (SHMT1, GART, ATIC, FTCD, MSRA, CBS, CTH, AHCYL1, HSBP1, DNMT3, HDAC9 and EZH2) identified as differentially expressed between the two maternal diet groups (p-value < 0.05), 3 of them were involved in epigenetic mechanisms. Ten other studied genes (MTR, GLRX, MTHFR, AHCY, ADK, PRDM2, EEF1A1, ESR1, PLAGL1, and WNT11) tended to be differently expressed (0.05 < p-value < 0.10). Moreover, the maternal dietary methionine restriction altered the number and nature of correlations between expression levels of differential genes for one-carbon metabolism and epigenetic mechanisms, expression levels of differential genes for energy metabolism, and phenotypic traits of ducklings. CONCLUSION: This avian model showed that the maternal dietary methionine restriction impacted both the mRNA abundance of 22 genes involved in one-carbon metabolism or epigenetic mechanisms and the mRNA abundance of 16 genes involved in energy metabolism in the liver of the newly hatched offspring, in line with the previously observed changes in their phenotypic traits.


Subject(s)
Diet , Methionine , Animals , Female , Racemethionine , Liver/metabolism , RNA, Messenger/metabolism , Carbon/metabolism
5.
BMC Genomics ; 23(1): 407, 2022 May 30.
Article in English | MEDLINE | ID: mdl-35637448

ABSTRACT

BACKGROUND: In mammals, the nutritional status experienced during embryonic development shapes key metabolic pathways and influences the health and phenotype of the future individual, a phenomenon known as nutritional programming. In farmed birds as well, the quantity and quality of feed offered to the dam can impact the phenotype of the offspring. We have previously reported that a 38% reduction in the intake of the methyl donor methionine in the diet of 30 female ducks during the growing and laying periods - from 10 to 51 weeks of age - reduced the body weight of their 180 mule ducklings compared to that of 190 ducklings from 30 control females. The maternal dietary methionine restriction also altered the hepatic energy metabolism studied in 30 of their ducklings. Thus, their plasma glucose and triglyceride concentrations were higher while their plasma free fatty acid level was lower than those measured in the plasma of 30 ducklings from the control group. The objective of this new study was to better understand how maternal dietary methionine restriction affected the livers of their newly hatched male and female ducklings by investigating the hepatic expression levels of 100 genes primarily targeting energy metabolism, amino acid transport, oxidative stress, apoptotic activity and susceptibility to liver injury. RESULTS: Sixteen of the genes studied were differentially expressed between the ducklings from the two groups. Maternal dietary methionine restriction affected the mRNA levels of genes involved in different pathways related to energy metabolism such as glycolysis, lipogenesis or electron transport. Moreover, the mRNA levels of the nuclear receptors PPARGC1B, PPARG and RXRA were also affected. CONCLUSIONS: Our results show that the 38% reduction in methionine intake in the diet of female ducks during the growing and egg-laying periods impacted the liver transcriptome of their offspring, which may explain the previously observed differences in their liver energy metabolism. These changes in mRNA levels, together with the observed phenotypic data, suggest an early modulation in the establishment of metabolic pathways.


Subject(s)
Ducks , Methionine , Animals , Energy Metabolism/genetics , Female , Liver/metabolism , Male , Mammals/metabolism , Methionine/metabolism , RNA, Messenger/metabolism
6.
J Nutr ; 152(3): 723-736, 2022 03 03.
Article in English | MEDLINE | ID: mdl-34875085

ABSTRACT

BACKGROUND: In mammals, the establishment around weaning of a symbiotic relationship between the gut microbiota and its host determines long-term health. OBJECTIVES: The aim of this study was to identify the factors driving the comaturation of the gut microbiota and intestinal epithelium at the suckling-to-weaning transition. We hypothesized that the developmental stage, solid food ingestion, and suckling cessation contribute to this process. METHODS: From birth to day 18, Hyplus rabbits were exclusively suckling. From day 18 to day 25, rabbits were 1) exclusively suckling; 2) suckling and ingesting solid food; or 3) exclusively ingesting solid food. The microbiota (16S amplicon sequencing), metabolome (nuclear magnetic resonance), and epithelial gene expression (high-throughput qPCR) were analyzed in the cecum at days 18 and 25. RESULTS: The microbiota structure and metabolic activity were modified with age when rabbits remained exclusively suckling. The epithelial gene expression of nutrient transporters, proliferation markers, and innate immune factors were also regulated with age (e.g., 1.5-fold decrease of TLR5). Solid food ingestion by suckling rabbits had a major effect on the gut microbiota by increasing its α diversity, remodeling its structure (e.g., 6.3-fold increase of Ruminococcaceae), and metabolic activity (e.g., 4.6-fold increase of butyrate). Solid food introduction also regulated the gene expression of nutrient transporters, differentiation markers, and innate immune factors in the epithelium (e.g., 3-fold increase of nitric oxide synthase). Suckling cessation had no effect on the microbiota, while it regulated the expression of genes involved in epithelial differentiation and immunoglobulin transport (e.g., 2.5-increase of the polymeric immunoglobulin receptor). CONCLUSIONS: In rabbits, the maturation of the microbiota at the suckling-to-weaning transition is driven by the introduction of solid food and, to a lesser extent, by the developmental stage. In contrast, the maturation of the intestinal epithelium at the suckling-to-weaning transition is under the influence of the developmental stage, solid food introduction, and suckling cessation.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Animals , Cecum , Intestinal Mucosa/metabolism , Mammals , Rabbits , Weaning
7.
BMC Genomics ; 18(1): 988, 2017 12 22.
Article in English | MEDLINE | ID: mdl-29273011

ABSTRACT

BACKGROUND: Stress is a generic term used to describe non-specific responses of the body to all kinds of challenges. A very large variability in the response can be observed across individuals, depending on numerous conditioning factors like genetics, early influences and life history. As a result, there is a wide range of individual vulnerability and resilience to stress, also called robustness. The importance of robustness-related traits in breeding strategies is increasing progressively towards the production of animals with a high level of production under a wide range of climatic conditions and management systems, together with a lower environmental impact and a high level of animal welfare. The present study aims at describing blood transcriptomic, hormonal, and metabolic responses of pigs to a systemic challenge using lipopolysaccharide (LPS). The objective is to analyze the individual variation of the biological responses in relation to the activity of the HPA axis measured by the levels of plasma cortisol after LPS and ACTH in 120 juvenile Large White (LW) pigs. The kinetics of the response was measured with biological variables and whole blood gene expression at 4 time points. A multilevel statistical analysis was used to take into account the longitudinal aspect of the data. RESULTS: Cortisol level reaches its peak 4 h after LPS injection. The characteristic changes of white blood cell count to LPS were observed, with a decrease of total count, maximal at t=+4 h, and the mirror changes in the respective proportions of lymphocytes and granulocytes. The lymphocytes / granulocytes ratio was maximal at t=+1 h. An integrative statistical approach was used and provided a set of candidate genes for kinetic studies and ongoing complementary studies focused on the LPS-stimulated inflammatory response. CONCLUSIONS: The present study demonstrates the specific biomarkers indicative of an inflammation in swine. Furthermore, these stress responses persist for prolonged periods of time and at significant expression levels, making them good candidate markers for evaluating the efficacy of anti-inflammatory drugs.


Subject(s)
Gene Regulatory Networks , Lipopolysaccharides/pharmacology , Transcriptome , Animals , Blood Cell Count , Female , Gene Expression Profiling , Hydrocortisone/blood , Immunity/genetics , Kinetics , Male , Swine , Transcriptome/drug effects
8.
Chemosphere ; 188: 60-72, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28869847

ABSTRACT

Aquatic systems are subjected to various sources of stress due to global changes, such as increasing temperature and pollution. A major challenge for the next decade will be to evaluate the combined effects of these multiple stressors on organisms and ecosystems. For organisms submitted to chemical, biological or physical stressors, the capacity to set up an efficient adaptive response is a fundamental prerequisite for their long-term survival and performance. In this study, goldfish (Carassius auratus) were subjected to individual and combined pesticide mixtures and increased temperatures to evaluate their adaptive response in multistress conditions from the molecular to the individual level. Fish were exposed for 16 days to a mixture of pesticides at environmental relevant concentrations (S-metolachlor, isoproturon, linuron, atrazine-desethyl, aclonifen, pendimethalin and tebuconazole) and at two temperatures (22 °C and 32 °C). Three major physiological traits of the stress response were measured: the hormonal response (i.e. plasma cortisol), the metabolic balance from molecular to individuals' levels (metabolomics, cellular energy allocation, energy reserves and global condition indexes), and the cellular defense system induction (SOD, CAT and GST). Results show that (1) environmentally relevant concentrations of pesticides lead to significant responses in fish at all biological levels; (2) the metabolic response depends on the nature of stress (thermal vs. chemical); and (3) fish may be unable to set up an efficient adaptive response when chemical and thermal stresses were combined, with adverse outcomes at the individuals' level.


Subject(s)
Adaptation, Physiological , Goldfish/metabolism , Stress, Physiological , Temperature , Water Pollutants, Chemical/metabolism , Animals , Goldfish/physiology , Metabolomics , Pesticides/metabolism
9.
BMC Genomics ; 18(1): 647, 2017 Aug 22.
Article in English | MEDLINE | ID: mdl-28830381

ABSTRACT

BACKGROUND: Maturity of intestinal functions is critical for neonatal health and survival, but comprehensive description of mechanisms underlying intestinal maturation that occur during late gestation still remain poorly characterized. The aim of this study was to investigate biological processes specifically involved in intestinal maturation by comparing fetal jejunal transcriptomes of two representative porcine breeds (Large White, LW; Meishan, MS) with contrasting neonatal vitality and maturity, at two key time points during late gestation (gestational days 90 and 110). MS and LW sows inseminated with mixed semen (from breed LW and MS) gave birth to both purebred and crossbred fetuses. We hypothesized that part of the differences in neonatal maturity between the two breeds results from distinct developmental profiles of the fetal intestine during late gestation. Reciprocal crossed fetuses were used to analyze the effect of parental genome. Transcriptomic data and 23 phenotypic variables known to be associated with maturity trait were integrated using multivariate analysis with expectation of identifying relevant genes-phenotypic variable relationships involved in intestinal maturation. RESULTS: A moderate maternal genotype effect, but no paternal genotype effect, was observed on offspring intestinal maturation. Four hundred and four differentially expressed probes, corresponding to 274 differentially expressed genes (DEGs), more specifically involved in the maturation process were further studied. In day 110-MS fetuses, Ingenuity® functional enrichment analysis revealed that 46% of DEGs were involved in glucose and lipid metabolism, cell proliferation, vasculogenesis and hormone synthesis compared to day 90-MS fetuses. Expression of genes involved in immune pathways including phagocytosis, inflammation and defense processes was changed in day 110-LW compared to day 90-LW fetuses (corresponding to 13% of DEGs). The transcriptional regulator PPARGC1A was predicted to be an important regulator of differentially expressed genes in MS. Fetal blood fructose level, intestinal lactase activity and villous height were the best predicted phenotypic variables with probes mostly involved in lipid metabolism, carbohydrate metabolism and cellular movement biological pathways. CONCLUSIONS: Collectively, our findings indicate that the neonatal maturity of pig intestine may rely on functional development of glucose and lipid metabolisms, immune phagocyte differentiation and inflammatory pathways. This process may partially be governed by PPARGC1A.


Subject(s)
Fetal Development/genetics , Gene Expression Profiling , Glucose/metabolism , Intestines/embryology , Intestines/immunology , Lipid Metabolism/genetics , Animals , Immunity/genetics , Intestinal Mucosa/metabolism , Phenotype , Swine
10.
BMC Genomics ; 16: 961, 2015 Nov 17.
Article in English | MEDLINE | ID: mdl-26578410

ABSTRACT

BACKGROUND: HPA axis plays a major role in physiological homeostasis. It is also involved in stress and adaptive response to the environment. In farm animals in general and specifically in pigs, breeding strategies have highly favored production traits such as lean growth rate, feed efficiency and prolificacy at the cost of robustness. On the hypothesis that the HPA axis could contribute to the trade-off between robustness and production traits, we have designed this experiment to explore individual variation in the biological response to the main stress hormone, cortisol, in pigs. We used ACTH injections to trigger production of cortisol in 120 juvenile Large White (LW) pigs from 28 litters and the kinetics of the response was measured with biological variables and whole blood gene expression at 4 time points. A multilevel statistical analysis was used to take into account the longitudinal aspect of the data. RESULTS: Cortisol level reached its peak 1 h after ACTH injection. White blood cell composition was modified with a decrease of lymphocytes and monocytes and an increase of granulocytes (F D R<0.05). Basal level of cortisol was correlated with birth and weaning weights. Microarray analysis identified 65 unique genes of which expression responded to the injection of ACTH (adjusted P<0.05). These genes were classified into 4 clusters with distinctive kinetics in response to ACTH injection. The first cluster identified genes strongly correlated to cortisol and previously reported as being regulated by glucocorticoids. In particular, DDIT4, DUSP1, FKBP5, IL7R, NFKBIA, PER1, RGS2 and RHOB were shown to be connected to each other by the glucocorticoid receptor NR3C1. Most of the differentially expressed genes that encode transcription factors have not been described yet as being important in transcription networks involved in stress response. Their co-expression may mean co-regulation and they could thus provide new patterns of biomarkers of the individual sensitivity to cortisol. CONCLUSIONS: We identified 65 genes as biological markers of HPA axis activation at the gene expression level. These genes might be candidates for a better understanding of the molecular mechanisms of the stress response.


Subject(s)
Adrenocorticotropic Hormone/pharmacology , Swine , Transcriptome/drug effects , Animals , Female , Hydrocortisone/blood , Kinetics , Male , Stress, Physiological/drug effects , Stress, Physiological/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...