Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 5024, 2024 02 29.
Article in English | MEDLINE | ID: mdl-38424094

ABSTRACT

Legumes have the ability to establish a nitrogen-fixing symbiosis with soil rhizobia that they house in specific organs, the nodules. In most rhizobium-legume interactions, nodulation occurs on the root. However, certain tropical legumes growing in wetlands possess a unique trait: the capacity to form rhizobia-harbouring nodules on the stem. Despite the originality of the stem nodulation process, its occurrence and diversity in waterlogging-tolerant legumes remains underexplored, impeding a comprehensive analysis of its genetics and biology. Here, we aimed at filling this gap by surveying stem nodulation in legume species-rich wetlands of Madagascar. Stem nodulation was readily observed in eight hydrophytic species of the legume genera, Aeschynomene and Sesbania, for which significant variations in stem nodule density and morphology was documented. Among these species, A. evenia, which is used as genetic model to study the rhizobial symbiosis, was found to be frequently stem-nodulated. Two other Aeschynomene species, A. cristata and A. uniflora, were evidenced to display a profuse stem-nodulation as occurs in S. rostrata. These findings extend our knowledge on legumes species that are endowed with stem nodulation and further indicate that A. evenia, A. cristata, A. uniflora and S. rostrata are of special interest for the study of stem nodulation. As such, these legume species represent opportunities to investigate different modalities of the nitrogen-fixing symbiosis and this knowledge could provide cues for the engineering of nitrogen-fixation in non-legume crops.


Subject(s)
Fabaceae , Rhizobium , Sesbania , Fabaceae/genetics , Madagascar , Wetlands , Nitrogen Fixation , Vegetables , Nitrogen , Symbiosis/genetics , Plant Root Nodulation/genetics , Root Nodules, Plant
2.
Plant Physiol ; 194(3): 1611-1630, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38039119

ABSTRACT

Legumes establish symbiotic interactions with nitrogen-fixing rhizobia that are accommodated in root-derived organs known as nodules. Rhizobial recognition triggers a plant symbiotic signaling pathway that activates 2 coordinated processes: infection and nodule organogenesis. How these processes are orchestrated in legume species utilizing intercellular infection and lateral root base nodulation remains elusive. Here, we show that Aeschynomene evenia OROSOMUCOID PROTEIN 1 (AeORM1), a key regulator of sphingolipid biosynthesis, is required for nodule formation. Using A. evenia orm1 mutants, we demonstrate that alterations in AeORM1 function trigger numerous early aborted nodules, defense-like reactions, and shorter lateral roots. Accordingly, AeORM1 is expressed during lateral root initiation and elongation, including at lateral root bases where nodule primordium form in the presence of symbiotic bradyrhizobia. Sphingolipidomics revealed that mutations in AeORM1 lead to sphingolipid overaccumulation in roots relative to the wild type, particularly for very long-chain fatty acid-containing ceramides. Taken together, our findings reveal that AeORM1-regulated sphingolipid homeostasis is essential for rhizobial infection and nodule organogenesis, as well as for lateral root development in A. evenia.


Subject(s)
Fabaceae , Rhizobium , Orosomucoid , Embryonic Development , Ceramides , Homeostasis
3.
Plant Physiol ; 190(2): 1400-1417, 2022 09 28.
Article in English | MEDLINE | ID: mdl-35876558

ABSTRACT

Intensive research on nitrogen-fixing symbiosis in two model legumes has uncovered the molecular mechanisms, whereby rhizobial Nod factors activate a plant symbiotic signaling pathway that controls infection and nodule organogenesis. In contrast, the so-called Nod-independent symbiosis found between Aeschynomene evenia and photosynthetic bradyrhizobia, which does not involve Nod factor recognition nor infection thread formation, is less well known. To gain knowledge on how Nod-independent symbiosis is established, we conducted a phenotypic and molecular characterization of A. evenia lines carrying mutations in different nodulation genes. Besides investigating the effect of the mutations on rhizobial symbiosis, we examined their consequences on mycorrhizal symbiosis and in nonsymbiotic conditions. Analyzing allelic mutant series for AePOLLUX, Ca2+/calmodulin dependent kinase, AeCYCLOPS, nodulation signaling pathway 2 (AeNSP2), and nodule inception demonstrated that these genes intervene at several stages of intercellular infection and during bacterial accommodation. We provide evidence that AeNSP2 has an additional nitrogen-dependent regulatory function in the formation of axillary root hairs at lateral root bases, which are rhizobia-colonized infection sites. Our investigation of the recently discovered symbiotic actor cysteine-rich receptor-like kinase specified that it is not involved in mycorrhization; however, it is essential for both symbiotic signaling and early infection during nodulation. These findings provide important insights on the modus operandi of Nod-independent symbiosis and contribute to the general understanding of how rhizobial-legume symbioses are established by complementing the information acquired in model legumes.


Subject(s)
Fabaceae , Rhizobium , Calcium/metabolism , Calcium-Calmodulin-Dependent Protein Kinases/metabolism , Calmodulin/metabolism , Cysteine/metabolism , Fabaceae/genetics , Fabaceae/metabolism , Nitrogen/metabolism , Nitrogen Fixation/genetics , Plant Root Nodulation/genetics , Root Nodules, Plant/metabolism , Symbiosis/genetics
4.
Nat Commun ; 12(1): 829, 2021 02 05.
Article in English | MEDLINE | ID: mdl-33547303

ABSTRACT

Among legumes (Fabaceae) capable of nitrogen-fixing nodulation, several Aeschynomene spp. use a unique symbiotic process that is independent of Nod factors and infection threads. They are also distinctive in developing root and stem nodules with photosynthetic bradyrhizobia. Despite the significance of these symbiotic features, their understanding remains limited. To overcome such limitations, we conduct genetic studies of nodulation in Aeschynomene evenia, supported by the development of a genome sequence for A. evenia and transcriptomic resources for 10 additional Aeschynomene spp. Comparative analysis of symbiotic genes substantiates singular mechanisms in the early and late nodulation steps. A forward genetic screen also shows that AeCRK, coding a receptor-like kinase, and the symbiotic signaling genes AePOLLUX, AeCCamK, AeCYCLOPS, AeNSP2, and AeNIN are required to trigger both root and stem nodulation. This work demonstrates the utility of the A. evenia model and provides a cornerstone to unravel mechanisms underlying the rhizobium-legume symbiosis.


Subject(s)
Bradyrhizobium/growth & development , Fabaceae/genetics , Gene Expression Regulation, Plant , Genome, Plant , Plant Proteins/genetics , Plant Root Nodulation/genetics , Symbiosis/genetics , Amino Acid Sequence , Biological Evolution , Fabaceae/classification , Fabaceae/growth & development , Fabaceae/microbiology , Gene Ontology , High-Throughput Nucleotide Sequencing , Molecular Sequence Annotation , Photosynthesis/genetics , Phylogeny , Plant Proteins/metabolism , Plant Roots/genetics , Plant Roots/growth & development , Plant Roots/microbiology , Plant Stems/genetics , Plant Stems/growth & development , Plant Stems/microbiology , Signal Transduction , Transcriptome
5.
Proc Natl Acad Sci U S A ; 116(43): 21758-21768, 2019 10 22.
Article in English | MEDLINE | ID: mdl-31591240

ABSTRACT

Several Bradyrhizobium species nodulate the leguminous plant Aeschynomene indica in a type III secretion system-dependent manner, independently of Nod factors. To date, the underlying molecular determinants involved in this symbiotic process remain unknown. To identify the rhizobial effectors involved in nodulation, we mutated 23 out of the 27 effector genes predicted in Bradyrhizobium strain ORS3257. The mutation of nopAO increased nodulation and nitrogenase activity, whereas mutation of 5 other effector genes led to various symbiotic defects. The nopM1 and nopP1 mutants induced a reduced number of nodules, some of which displayed large necrotic zones. The nopT and nopAB mutants induced uninfected nodules, and a mutant in a yet-undescribed effector gene lost the capacity for nodule formation. This effector gene, widely conserved among bradyrhizobia, was named ernA for "effector required for nodulation-A." Remarkably, expressing ernA in a strain unable to nodulate A. indica conferred nodulation ability. Upon its delivery by Pseudomonas fluorescens into plant cells, ErnA was specifically targeted to the nucleus, and a fluorescence resonance energy transfer-fluorescence lifetime imaging microscopy approach supports the possibility that ErnA binds nucleic acids in the plant nuclei. Ectopic expression of ernA in A. indica roots activated organogenesis of root- and nodule-like structures. Collectively, this study unravels the symbiotic functions of rhizobial type III effectors playing distinct and complementary roles in suppression of host immune functions, infection, and nodule organogenesis, and suggests that ErnA triggers organ development in plants by a mechanism that remains to be elucidated.


Subject(s)
Bradyrhizobium/metabolism , Fabaceae/microbiology , Organogenesis, Plant/physiology , Plant Root Nodulation/physiology , Root Nodules, Plant/metabolism , Bradyrhizobium/genetics , Nitrogenase/genetics , Nitrogenase/metabolism , Organogenesis, Plant/genetics , Plant Roots/metabolism , Pseudomonas fluorescens/genetics , Symbiosis/physiology , Type III Secretion Systems/metabolism
6.
Front Microbiol ; 8: 1821, 2017.
Article in English | MEDLINE | ID: mdl-28983292

ABSTRACT

In rhizobium strains, the lipid A is modified by the addition of a very long-chain fatty acid (VLCFA) shown to play an important role in rigidification of the outer membrane, thereby facilitating their dual life cycle, outside and inside the plant. In Bradyrhizobium strains, the lipid A is more complex with the presence of at least two VLCFAs, one covalently linked to a hopanoid molecule, but the importance of these modifications is not well-understood. In this study, we identified a cluster of VLCFA genes in the photosynthetic Bradyrhizobium strain ORS278, which nodulates Aeschynomene plants in a Nod factor-independent process. We tried to mutate the different genes of the VLCFA gene cluster to prevent the synthesis of the VLCFAs, but only one mutant in the lpxXL gene encoding an acyltransferase was obtained. Structural analysis of the lipid A showed that LpxXL is involved in the transfer of the C26:25OH VLCFA to the lipid A but not in the one of the C30:29OH VLCFA which harbors the hopanoid molecule. Despite maintaining the second VLCFA, the ability of the mutant to cope with various stresses (low pH, high temperature, high osmolarity, and antimicrobial peptides) and to establish an efficient nitrogen-fixing symbiosis was drastically reduced. In parallel, we investigated whether the BRADO0045 gene, which encodes a putative acyltransferase displaying a weak identity with the apo-lipoprotein N-acyltransferase Lnt, could be involved in the transfer of the C30:29OH VLCFA to the lipid A. Although the mutant exhibited phenotypes similar to the lpxXL mutant, no difference in the lipid A structure was observed from that in the wild-type strain, indicating that this gene is not involved in the modification of lipid A. Our results advance our knowledge of the biosynthesis pathway and the role of VLCFAs-modified lipid A in free-living and symbiotic states of Bradyrhizobium strains.

7.
Sci Rep ; 7(1): 4902, 2017 07 07.
Article in English | MEDLINE | ID: mdl-28687751

ABSTRACT

PA1b (Pea Albumin 1, subunit b) peptide is an entomotoxin, extracted from Legume seeds, with a lethal activity towards several insect pests, such as mosquitoes, some aphids and cereal weevils. This toxin acts by binding to the subunits c and e of the plasma membrane H+-ATPase (V-ATPase) in the insect midgut. In this study, two cereal weevils, the sensitive Sitophilus oryzae strain WAA42, the resistance Sitophilus oryzae strain ISOR3 and the insensitive red flour beetle Tribolium castaneum, were used in biochemical and histological experiments to demonstrate that a PA1b/V-ATPase interaction triggers the apoptosis mechanism, resulting in insect death. Upon intoxication with PA1b, apoptotic bodies are formed in the cells of the insect midgut. In addition, caspase-3 enzyme activity occurs in the midgut of sensitive weevils after intoxication with active PA1b, but not in the midgut of resistant weevils. These biochemical data were confirmed by immuno-histochemical detection of the caspase-3 active form in the midgut of sensitive weevils. Immuno-labelling experiments also revealed that the caspase-3 active form and V-ATPase are close-localized in the insect midgut. The results concerning this unique peptidic V-ATPase inhibitor pave the way for the utilization of PA1b as a promising, more selective and eco-friendly insecticide.


Subject(s)
Insect Proteins/genetics , Insecticides/toxicity , Peptides/toxicity , Pisum sativum/genetics , Plant Proteins/toxicity , Toxins, Biological/toxicity , Vacuolar Proton-Translocating ATPases/genetics , Animals , Apoptosis , Caspase 3/genetics , Caspase 3/metabolism , Gastrointestinal Tract/drug effects , Gastrointestinal Tract/metabolism , Gene Expression Regulation , Insect Proteins/antagonists & inhibitors , Insect Proteins/metabolism , Insecticides/isolation & purification , Insecticides/metabolism , Pisum sativum/chemistry , Pisum sativum/parasitology , Peptides/isolation & purification , Peptides/metabolism , Plant Proteins/isolation & purification , Plant Proteins/metabolism , Protein Binding , Protein Subunits/antagonists & inhibitors , Protein Subunits/genetics , Protein Subunits/metabolism , Seeds/chemistry , Seeds/genetics , Seeds/parasitology , Toxins, Biological/isolation & purification , Toxins, Biological/metabolism , Tribolium/drug effects , Tribolium/metabolism , Vacuolar Proton-Translocating ATPases/antagonists & inhibitors , Vacuolar Proton-Translocating ATPases/metabolism , Weevils/drug effects , Weevils/metabolism
8.
Plant Physiol ; 169(2): 1254-65, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26286718

ABSTRACT

Nutritional symbiotic interactions require the housing of large numbers of microbial symbionts, which produce essential compounds for the growth of the host. In the legume-rhizobium nitrogen-fixing symbiosis, thousands of rhizobium microsymbionts, called bacteroids, are confined intracellularly within highly specialized symbiotic host cells. In Inverted Repeat-Lacking Clade (IRLC) legumes such as Medicago spp., the bacteroids are kept under control by an arsenal of nodule-specific cysteine-rich (NCR) peptides, which induce the bacteria in an irreversible, strongly elongated, and polyploid state. Here, we show that in Aeschynomene spp. legumes belonging to the more ancient Dalbergioid lineage, bacteroids are elongated or spherical depending on the Aeschynomene spp. and that these bacteroids are terminally differentiated and polyploid, similar to bacteroids in IRLC legumes. Transcriptome, in situ hybridization, and proteome analyses demonstrated that the symbiotic cells in the Aeschynomene spp. nodules produce a large diversity of NCR-like peptides, which are transported to the bacteroids. Blocking NCR transport by RNA interference-mediated inactivation of the secretory pathway inhibits bacteroid differentiation. Together, our results support the view that bacteroid differentiation in the Dalbergioid clade, which likely evolved independently from the bacteroid differentiation in the IRLC clade, is based on very similar mechanisms used by IRLC legumes.


Subject(s)
Biological Evolution , Fabaceae/physiology , Plant Proteins/metabolism , Root Nodules, Plant/microbiology , Symbiosis/physiology , Amino Acid Sequence , Bradyrhizobium/physiology , Cysteine/chemistry , Fabaceae/microbiology , Gene Expression Regulation, Plant , Molecular Sequence Data , Peptides/chemistry , Peptides/metabolism , Plant Proteins/chemistry , Root Nodules, Plant/physiology
9.
Toxicon ; 89: 67-76, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25064271

ABSTRACT

The Pea Albumin 1 subunit b (PA1b) peptide is an entomotoxin extracted from legume seeds with lethal activity towards several insect pests. Its toxic activity occurs after the perception of PA1b by a plasmalemmic proton pump (V-ATPase) in the insects. Assays revealed that PA1b showed no activity towards mammalian cells displaying high V-ATPase activity. Similarly, PA1b displayed no binding activity and no biological activity towards other non-insect organisms. We demonstrate here that binding to labelled PA1b was found in all the insect families tested, regardless of the sensitivity or insensitivity of the individual species. The coleopteran Bruchidae, which are mainly legume seed pests, were found to be fully resistant. A number of insect species were seen to be insensitive to the toxin although they exhibited binding activity for the labelled PA1b. The fruit fly, Drosophila melanogaster (Diptera), was generally insensitive when maintained on an agar diet, but the fly appeared to be sensitive to PA1b in bioassays using a different diet. In conclusion, the PA1b toxin provides legumes with a major source of resistance to insects, and insects feeding on legume seeds need to overcome this plant resistance by disrupting the PA1b - V-ATPase interaction.


Subject(s)
Fabaceae/chemistry , Insecta/drug effects , Pesticides/toxicity , Plant Proteins/toxicity , Vacuolar Proton-Translocating ATPases/chemistry , Amino Acid Sequence , Animals , Cell Differentiation/drug effects , Cell Line, Tumor , Coleoptera/drug effects , Drosophila melanogaster/drug effects , Humans , Insect Proteins/chemistry , Insecticide Resistance , MCF-7 Cells , Mice , Molecular Sequence Data , Osteoclasts/drug effects , Pesticides/chemistry , Plant Proteins/chemistry , Seeds/chemistry , Toxicity Tests
10.
J Biol Chem ; 289(23): 16399-408, 2014 Jun 06.
Article in English | MEDLINE | ID: mdl-24795045

ABSTRACT

The vacuolar ATPase (V-ATPase) is a 1MDa transmembrane proton pump that operates via a rotary mechanism fuelled by ATP. Essential for eukaryotic cell homeostasis, it plays central roles in bone remodeling and tumor invasiveness, making it a key therapeutic target. Its importance in arthropod physiology also makes it a promising pesticide target. The major challenge in designing lead compounds against the V-ATPase is its ubiquitous nature, such that any therapeutic must be capable of targeting particular isoforms. Here, we have characterized the binding site on the V-ATPase of pea albumin 1b (PA1b), a small cystine knot protein that shows exquisitely selective inhibition of insect V-ATPases. Electron microscopy shows that PA1b binding occurs across a range of equivalent sites on the c ring of the membrane domain. In the presence of Mg·ATP, PA1b localizes to a single site, distant from subunit a, which is predicted to be the interface for other inhibitors. Photoaffinity labeling studies show radiolabeling of subunits c and e. In addition, weevil resistance to PA1b is correlated with bafilomycin resistance, caused by mutation of subunit c. The data indicate a binding site to which both subunits c and e contribute and inhibition that involves locking the c ring rotor to a static subunit e and not subunit a. This has implications for understanding the V-ATPase mechanism and that of inhibitors with therapeutic or pesticidal potential. It also provides the first evidence for the position of subunit e within the complex.


Subject(s)
Albumins/metabolism , Insecticides/metabolism , Pisum sativum/metabolism , Vacuolar Proton-Translocating ATPases/metabolism , Albumins/antagonists & inhibitors , Base Sequence , Benzophenones/metabolism , Binding Sites , Biotin/metabolism , DNA Primers , Insecticides/chemistry , Microscopy, Electron , Photoaffinity Labels , Protein Binding , Vacuolar Proton-Translocating ATPases/chemistry
11.
PLoS One ; 8(12): e81619, 2013.
Article in English | MEDLINE | ID: mdl-24349099

ABSTRACT

The PA1b (Pea Albumin 1, subunit b) peptide is an entomotoxin extract from Legume seeds with lethal activity on several insect pests, such as mosquitoes, some aphids and cereal weevils. This 37 amino-acid cysteine-rich peptide has been, until now, obtained by biochemical purification or chemical synthesis. In this paper, we present our results for the transient production of the peptide in Nicotiana benthamiana by agro-infiltration, with a yield of about 35 µg/g of fresh leaves and maximum production 8 days after infiltration. PA1b is part of the PA1 gene which, after post-translational modifications, encodes two peptides (PA1b and PA1a). We show that transforming tobacco with the PA1b cDNA alone does not result in production of the toxin and, in fact, the entire cDNA is necessary, raising the question of the role of PA1a. We constructed a PA1-cassette, allowing for the quick "cut/paste" of different PA1b mutants within a conserved PA1 cDNA. This cassette enabled us to produce the six isoforms of PA1b which exist in pea seeds. Biological tests revealed that all the isoforms display similar activity, with the exception of one which is inactive. The lack of activity in this isoform led us to conclude that the amphiphilic nature of the peptide is necessary for activity. The possible applications of this expression system for other cysteine-rich biomolecules are discussed.


Subject(s)
Insecticides/chemistry , Nicotiana/genetics , Pisum sativum/chemistry , Plant Proteins/chemistry , Protein Subunits/chemistry , Toxins, Biological/chemistry , Amino Acid Sequence , Biological Control Agents , DNA, Complementary , Gene Expression , Hydrophobic and Hydrophilic Interactions , Insecticides/metabolism , Models, Molecular , Molecular Sequence Data , Pisum sativum/metabolism , Plant Proteins/biosynthesis , Plant Proteins/genetics , Protein Isoforms/biosynthesis , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Processing, Post-Translational , Protein Subunits/biosynthesis , Protein Subunits/genetics , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Nicotiana/metabolism , Toxins, Biological/biosynthesis , Toxins, Biological/genetics
12.
BMC Chem Biol ; 12: 3, 2012 Jul 02.
Article in English | MEDLINE | ID: mdl-22536832

ABSTRACT

BACKGROUND: Because of the increasingly concern of consumers and public policy about problems for environment and for public health due to chemical pesticides, the search for molecules more safe is currently of great importance. Particularly, plants are able to fight the pathogens as insects, bacteria or fungi; so that plants could represent a valuable source of new molecules. RESULTS: It was observed that Medicago truncatula seed flour displayed a strong toxic activity towards the adults of the rice weevil Sitophilus oryzae (Coleoptera), a major pest of stored cereals. The molecule responsible for toxicity was purified, by solvent extraction and HPLC, and identified as a saponin, namely 3-GlcA-28-AraRhaxyl-medicagenate. Saponins are detergents, and the CMC of this molecule was found to be 0.65 mg per mL. Neither the worm Caenorhabditis elegans nor the bacteria E. coli were found to be sensitive to this saponin, but growth of the yeast Saccharomyces cerevisiae was inhibited at concentrations higher than 100 µg per mL. The purified molecule is toxic for the adults of the rice weevils at concentrations down to 100 µg per g of food, but this does not apply to the others insects tested, including the coleopteran Tribolium castaneum and the Sf9 insect cultured cells. CONCLUSIONS: This specificity for the weevil led us to investigate this saponin potential for pest control and to propose the hypothesis that this saponin has a specific mode of action, rather than acting via its non-specific detergent properties.

13.
J Biol Chem ; 286(42): 36291-6, 2011 Oct 21.
Article in English | MEDLINE | ID: mdl-21890633

ABSTRACT

PA1b (for pea albumin 1 subunit b) is a plant bioinsecticide lethal to several pests that are important in agriculture or human health. PA1b belongs to the inhibitory cystine knot family or knottin family. Originating from a plant (the garden pea) commonly eaten by humans without any known toxic or allergic effects, PA1b is a candidate for transgenic applications and is one of the most promising biopesticides for pest control. Using whole-cell patch-clamp techniques on Sf9 PA1b-sensitive lepidopteran insect cells, we discovered that PA1b reversibly blocked ramp membrane currents in a dose-dependent manner (EC(50) = 0.52 µM). PA1b had the same effect as bafilomycin, a specific inhibitor of the vacuolar proton pump (V-type H(+)-ATPase), and the PA1b-sensitive current depended on the internal proton concentration. Biochemical assays on purified V-ATPase from the lepidopteran model Manduca sexta showed that PA1b inhibited the V(1)V(0)-type H(+)-ATPase holoenzyme activity (IC(50) ∼ 70 nM) by interacting with the membrane-bound V(0) part of the V-ATPase. V-ATPase is a complex protein that has been studied increasingly because of its numerous physiological roles. In the midgut of insects, V-ATPase activity is essential for energizing nutrient absorption, and the results reported in this work explain the entomotoxic properties of PA1b. Targeting V-ATPase is a promising means of combating insect pests, and PA1b represents the first peptidic V-ATPase inhibitor. The search for V-ATPase inhibitors is currently of great importance because it has been demonstrated that V-ATPase plays a role in so many physiological processes.


Subject(s)
Cystine-Knot Miniproteins/pharmacology , Insect Proteins/antagonists & inhibitors , Insecticides/pharmacology , Manduca/enzymology , Plant Proteins/pharmacology , Vacuolar Proton-Translocating ATPases/antagonists & inhibitors , Animals , Cell Line , Humans , Spodoptera/enzymology
14.
Toxins (Basel) ; 3(12): 1502-17, 2011 12.
Article in English | MEDLINE | ID: mdl-22295174

ABSTRACT

PA1b (Pea Albumin 1, subunit b) is a peptide extract from pea seeds showing significant insecticidal activity against certain insects, such as cereal weevils (genus Sitophilus), the mosquitoes Culex pipiens and Aedes aegyptii, and certain species of aphids. PA1b has great potential for use on an industrial scale and for use in organic farming: it is extracted from a common plant; it is a peptide (and therefore suitable for transgenic applications); it can withstand many steps of extraction and purification without losing its activity; and it is present in a seed regularly consumed by humans and mammals without any known toxicity or allergenicity. The potential of this peptide to limit pest damage has stimulated research concerning its host range, its mechanism of action, its three-dimensional structure, the natural diversity of PA1b and its structure-function relationships.


Subject(s)
Albumins/pharmacology , Insecticides/pharmacology , Pisum sativum/chemistry , Albumins/chemistry , Albumins/genetics , Amino Acid Sequence , Animals , Base Sequence , Biodiversity , Insecta/drug effects , Insecticides/chemistry , Molecular Sequence Data , Pest Control, Biological , Protein Subunits/chemistry , Protein Subunits/genetics , Protein Subunits/pharmacology , Structure-Activity Relationship
15.
J Biol Chem ; 285(43): 32689-32694, 2010 Oct 22.
Article in English | MEDLINE | ID: mdl-20660598

ABSTRACT

PA1b (pea albumin 1, subunit b) is a small and compact 37-amino acid protein, isolated from pea seeds (Pisum sativum), that adopts a cystine knot fold. It acts as a potent insecticidal agent against major pests in stored crops and vegetables, making it a promising bioinsecticide. Here, we investigate the influence of individual residues on the structure and bioactivity of PA1b. A collection of 13 PA1b mutants was successfully chemically synthesized in which the residues involved in the definition of PA1b amphiphilic and electrostatic characteristics were individually replaced with an alanine. The three-dimensional structure of PA1b was outstandingly tolerant of modifications. Remarkably, receptor binding and insecticidal activities were both dependent on common well defined clusters of residues located on one single face of the toxin, with Phe-10, Arg-21, Ile-23, and Leu-27 being key residues of the binding interaction. The inactivity of the mutants is clearly due to a change in the nature of the side chain rather than to a side effect, such as misfolding or degradation of the peptide, in the insect digestive tract. We have shown that a hydrophobic patch is the putative site of the interaction of PA1b with its binding site. Overall, the mutagenesis data provide major insights into the functional elements responsible for PA1b entomotoxic properties and give some clues toward a better understanding of the PA1b mode of action.


Subject(s)
2S Albumins, Plant/chemistry , Insecticides/chemistry , Pisum sativum/chemistry , Protein Folding , Toxins, Biological/chemistry , Crystallography, X-Ray , Mutation , Protein Structure, Tertiary , Protein Subunits/chemistry
16.
Biopolymers ; 92(5): 436-44, 2009.
Article in English | MEDLINE | ID: mdl-19399851

ABSTRACT

PA1b (Pea Albumin 1, subunit b) is a hydrophobic, 37-amino acid miniprotein isolated from pea seeds (Pivum sativum), crosslinked by three interlocked disulfide bridges, signature of the ICK (inhibitory cystine-knot) family. It acts as an entomotoxic factor against major insect pests in stored crops and vegetables, making it a promising bioinsecticide. Here we report an efficient and simple protocol for the production of large quantities of highly pure, biologically active synthetic PA1b. The features of PA1b oxidative refolding revealed the off-pathway products and competitive aggregation processes. The efficiency of the oxidative folding can be significantly improved by using hydrophobic alcoholic cosolvents and decreasing the temperature. The homogeneity of the synthetic oxidized PA1b was established by reversed-phase HPLC. The correct pairing of the three disulfide bridges, as well as the three-dimensional structure of synthetic PA1b was assessed by NMR. Synthetic PA1b binds to microsomal proteins from Sitophilus oryzae with a Kd of 8 nM, a figure quite similar to that determined for PA1b extracted from its natural source. Moreover, the synthetic miniprotein was as potent as the extracted one towards the sensitive strains of weevils. Our findings will open the way to the production of PA1b analogues by chemical means to an in-depth understanding of the PA1b mechanism of action.


Subject(s)
Pisum sativum/chemistry , Plant Proteins/chemistry , Plant Proteins/toxicity , Weevils/drug effects , Amino Acid Sequence , Animals , Molecular Sequence Data , Oxidation-Reduction , Peptides/chemical synthesis , Peptides/chemistry , Peptides/genetics , Plant Proteins/genetics , Protein Folding , Solvents , Temperature
17.
Biochimie ; 89(12): 1539-43, 2007 Dec.
Article in English | MEDLINE | ID: mdl-17845830

ABSTRACT

PA1b (Pea Albumin 1b) is a peptide toxin lethal for certain insects. This paper shows that the cultured insect cells Sf9 are sensitive to the toxin and display a high-affinity binding site for PA1b. Mammalian cells are not sensitive and no binding activity was detected. Signs of apoptosis of the Sf9 cells were observed in response to the toxin. The use of this cellular model also demonstrated that PA1b was internalized in the cells, via the binding site, raising the new question of the role of this toxin within the cell, and of the mechanisms leading to cell death.


Subject(s)
Albumins/chemistry , Endotoxins/chemistry , Pisum sativum/metabolism , Spodoptera/cytology , Spodoptera/metabolism , Animals , Apoptosis/drug effects , Binding Sites , Cell Culture Techniques , Cell Survival/drug effects , Cells, Cultured , Endotoxins/isolation & purification , Endotoxins/pharmacology , Iodine Radioisotopes/metabolism , Kinetics , Molecular Weight , Plant Proteins/chemistry , Protein Binding , Protein Isoforms/chemistry , Spodoptera/ultrastructure , Temperature , Time Factors
18.
Phytochemistry ; 68(4): 521-35, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17222873

ABSTRACT

Pea albumin 1b (PA1b) is a small sulphur-rich peptide from pea seeds, also named leginsulin because of the binding characteristics of its soybean orthologue. Its insecticidal properties were discovered more recently. By using a combination of molecular, biochemical and specific insect bioassays on seed extracts, we characterised genes from numerous Papilionoideae, but not from Caesalpinioideae or Mimosoideae, although the last group harboured species with partially positive cues (homologous biological activities). The A1b defence peptide family, therefore, appears to have evolved relatively late in the legume lineage, maybe from the sophoroid group (e.g. Styphnolobium japonicum). However, unambiguous sequence information is restricted to a group of tribes within the subfamily Papilionoideae (Psoraleae, Millettieae, Desmodieae, Hedysareae, Phaseoleae, Vicieae, and the now clearly polyphyletic "Trifolieae" and "Galegeae"). Recent diversification by gene duplications has occurred in many species, or longer ago in some lineages (Medicago truncatula), as well as probable gene or expression losses at different taxonomic levels (Loteae, Vigna subterranea).


Subject(s)
Fabaceae/genetics , Genetic Variation , Plant Proteins/toxicity , Seeds/physiology , Amino Acid Sequence , Biological Assay , Cloning, Molecular , Fabaceae/classification , Insecticides , Molecular Sequence Data , Pisum sativum/genetics , Phylogeny , Plant Proteins/chemistry , Plant Proteins/genetics
19.
J Insect Sci ; 7: 1-10, 2007.
Article in English | MEDLINE | ID: mdl-20331395

ABSTRACT

The aim of this work was to investigate both the biological activity of an entomotoxin, the pea albumin 1b (PA1b), and the presence or absence of its binding site within an array of insect species. The data obtained showed that insect sensitivity was not related to its taxonomic position. Moreover, PA1b was not toxic to several tested microorganisms. However, the binding site was found to be conserved among very different insects, displaying similar thermodynamic constants regardless of the in vivo species sensitivity. The binding site alone was, therefore, not sufficient for toxicity. One exception was the pea weevil, Bruchus pisorum, which was the only tested species without any detectable binding activity. These findings indicate that the binding site probably has an important endogenous function in insects and that adaptation to pea seeds resulted in the elimination of the toxin binding activity in two independent insect lineages. Other mechanisms are likely to interact with the toxin effects, although they are still largely unknown, but there is no evidence of any specific degradation of PA1b in the midgut of insects insensitive to the toxin, such as Drosophila melanogaster or Mamestra brassicae.


Subject(s)
Albumins/metabolism , Albumins/toxicity , Endotoxins/metabolism , Endotoxins/toxicity , Insecta/drug effects , Animals , Bacteria/drug effects , Binding Sites , Fungi/drug effects , Insecta/metabolism , Pisum sativum/chemistry , Peptide Hydrolases/metabolism
20.
BMC Biochem ; 5: 4, 2004 Apr 13.
Article in English | MEDLINE | ID: mdl-15084228

ABSTRACT

BACKGROUND: The NodH sulfotransferase from Sinorhizobium meliloti has been used to radiolabel lipochitooligosaccharidic (LCO) Nod factor signals with 35S from inorganic sulfate in a two-step enzymatic procedure. The first step involved the production of 3'-phosphoadenosine 5'-phosphosulfate (PAPS), a sulphate donor, using enzymes contained in a yeast extract, and the second step used the NodH enzyme. However with this established procedure, only a low incorporation of the initial inorganic sulfate into the Nod factors was obtained (about 7% after purification of the labeled compounds). The aim of this work was to optimize the radiolabelling of Nod factors with 35S. RESULTS: The limiting step has been shown to be the sulfation of ATP and its subsequent conversion into PAPS (first step), the sulfate donor for the NodH sulfotransferase activity (second step). By the addition of GTP to the reaction mixture and by manipulating the [ATP]/[Mg2+] ratio the yield of PAPS has been increased from 13% to 80%. Using the radiolabeled PAPS we have shown that the efficiency of sulfate transfer to LCOs, by the recombinant S. meliloti NodH sulfotransferase is strongly influenced by the length of the oligosaccharide chain. Variations in the substitutions on the non-reducing sugar, including the structure of the fatty acyl chain, had little effect and Nod factors from the heterologous bacterium Rhizobium tropici could be sulfated by NodH from S. meliloti. CONCLUSIONS: By characterizing the two steps we have optimized the procedure to radiolabel biologically-important, lipo-chitooligosaccharide (LCO) Nod factors to a specific radioactivity of about 800 Ci x mmol(-1) with an incorporation of 60% of the initial inorganic sulfate. The two-step sulfation procedure may be used to radiolabel a variety of related LCO molecules.


Subject(s)
Bacterial Proteins/metabolism , Isotope Labeling/methods , Lipopolysaccharides/chemistry , Sulfotransferases/metabolism , Adenosine Triphosphate/pharmacology , Guanosine Triphosphate/pharmacology , Kinetics , Lipopolysaccharides/metabolism , Magnesium/pharmacology , Phosphoadenosine Phosphosulfate/biosynthesis , Substrate Specificity , Sulfur Radioisotopes
SELECTION OF CITATIONS
SEARCH DETAIL
...