Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
J Med Chem ; 67(8): 6456-6494, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38574366

ABSTRACT

Dysregulation of IL17A drives numerous inflammatory and autoimmune disorders with inhibition of IL17A using antibodies proven as an effective treatment. Oral anti-IL17 therapies are an attractive alternative option, and several preclinical small molecule IL17 inhibitors have previously been described. Herein, we report the discovery of a novel class of small molecule IL17A inhibitors, identified via a DNA-encoded chemical library screen, and their subsequent optimization to provide in vivo efficacious inhibitors. These new protein-protein interaction (PPI) inhibitors bind in a previously undescribed mode in the IL17A protein with two copies binding symmetrically to the central cavities of the IL17A homodimer.


Subject(s)
DNA , Drug Discovery , Interleukin-17 , Small Molecule Libraries , Interleukin-17/metabolism , Interleukin-17/antagonists & inhibitors , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , DNA/metabolism , DNA/chemistry , Humans , Animals , Structure-Activity Relationship , Protein Binding , Mice
2.
J Med Chem ; 67(7): 5216-5232, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38527911

ABSTRACT

Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR) protein. This epithelial anion channel regulates the active transport of chloride and bicarbonate ions across membranes. Mutations result in reduced surface expression of CFTR channels with impaired functionality. Correctors are small molecules that support the trafficking of CFTR to increase its membrane expression. Such correctors can have different mechanisms of action. Combinations may result in a further improved therapeutic benefit. We describe the identification and optimization of a new pyrazolol3,4-bl pyridine-6-carboxylic acid series with high potency and efficacy in rescuing CFTR from the cell surface. Investigations showed that carboxylic acid group replacement with acylsulfonamides and acylsulfonylureas improved ADMET and PK properties, leading to the discovery of the structurally novel co-corrector GLPG2737. The addition of GLPG2737 to the combination of the potentiator GLPG1837 and C1 corrector 4 led to an 8-fold increase in the F508del CFTR activity.


Subject(s)
Cystic Fibrosis , Humans , Cystic Fibrosis/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Mutation , Cell Membrane/metabolism , Carboxylic Acids/therapeutic use , Benzodioxoles/pharmacology , Aminopyridines/therapeutic use
3.
ACS Omega ; 7(48): 44383-44389, 2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36506123

ABSTRACT

A-9758 is an inverse agonist of retinoic acid-related orphan receptor γt with well-characterized in vitro and in vivo anti-inflammatory activity. A chromatography-free decagram-scale synthesis of this compound was developed to support pre-clinical research activities. This route was designed to enable late-stage structure-activity relationship studies of the amide moiety and convergently uses a reductive alkylation sequence between indole and benzaldehyde intermediates. A key advantage of this strategy is the fact that the indole precursor can be alkylated at C2, as required for A-9758, or at C3 to provide access to an isomeric chemical series. Access to the critical indole fragment was expedited via an underutilized SnAr/reductive cyclization cascade sequence, and the benzaldehyde fragment was prepared in two steps from inexpensive 2,4-dichlorobenzoic acid.

4.
Org Lett ; 24(40): 7305-7308, 2022 Oct 14.
Article in English | MEDLINE | ID: mdl-36178872

ABSTRACT

ABBV-3748 is a C2 corrector for the treatment of cystic fibrosis profiled among AbbVie's CFTR portfolio. A decagram-scale enabling asymmetric synthesis is described which addresses numerous shortcomings of the original route. Highlights include an InBr3-catalyzed intramolecular hydroarylation reaction that rapidly assembles the chromane core, an exceptionally efficient asymmetric hydrogenation of a primary enamide, and identification of tBuMgCl as a uniquely effective base in a challenging acyl sulfonamide formation.


Subject(s)
Cystic Fibrosis , Benzodioxoles/pharmacology , Benzodioxoles/therapeutic use , Cystic Fibrosis/drug therapy , Cystic Fibrosis Transmembrane Conductance Regulator , Humans , Mutation , Sulfonamides/therapeutic use
5.
Bioorg Med Chem Lett ; 72: 128843, 2022 09 15.
Article in English | MEDLINE | ID: mdl-35688367

ABSTRACT

Cystic fibrosis (CF) is an autosomal recessive disease resulting from mutations on both copies of the CFTR gene. Phenylalanine deletion at position 508 of the CFTR protein (F508del-CFTR) is the most frequent mutation in CF patients. Currently, the most effective treatments of CF use a dual or triple combination of CFTR correctors and potentiators. In triple therapy, two correctors (C1 and C2) and a potentiator are employed. Herein, we describe the identification and exploration of the SAR of a series of 4-aminopyrrolidine-2-carboxylic acid C2 correctors of CFTR to be used in conjunction with our existing C1 corrector series for the treatment of CF.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , Benzodioxoles , Cystic Fibrosis/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Humans , Mutation , Proline/analogs & derivatives , Structure-Activity Relationship
6.
J Org Chem ; 87(1): 776-789, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34939418

ABSTRACT

We report operationally facile methods for the synthesis of substituted dihydroisoquinolinones and tetrahydroisoquinolines from readily accessible o-bromobenzyl bromides and o-bromobenzaldehydes, respectively. While classical electrophilic aromatic substitution reactions are tailored to the construction of saturated isoquinolines derived from electron-rich precursors, we demonstrate efficient syntheses from electronically diverse substrates to produce cyclized products as single regioisomers.


Subject(s)
Palladium , Tetrahydroisoquinolines , Catalysis , Cyclization , Isoquinolines
7.
ACS Med Chem Lett ; 12(9): 1365-1373, 2021 Sep 09.
Article in English | MEDLINE | ID: mdl-34531945

ABSTRACT

The paramount importance of synthetic organic chemistry in the pharmaceutical industry arises from the necessity to physically prepare all designed molecules to obtain key data to feed the design-synthesis-data cycle, with the medicinal chemist at the center of this cycle. Synthesis specialists accelerate the cycle of medicinal chemistry innovation by rapidly identifying and executing impactful synthetic methods and strategies to accomplish project goals, addressing the synthetic accessibility bottleneck that often plagues discovery efforts. At AbbVie, Discovery Synthesis Groups (DSGs) such as Centralized Organic Synthesis (COS) have been deployed as embedded members of medicinal chemistry teams, filling the gap between discovery and process chemistry. COS chemists provide synthetic tools, scaffolds, and lead compounds to fuel the pipeline. Examples of project contributions from neuroscience, cystic fibrosis, and virology illustrate the impact of the DSG approach. In the first ten years of innovative science in pursuit of excellence in synthesis, several advanced drug candidates, including ABBV-2222 (galicaftor) for cystic fibrosis and foslevodopa/foscarbidopa for Parkinson's disease, have emerged with key contributions from COS.

8.
Chem Sci ; 12(29): 10076-10082, 2021 Jul 28.
Article in English | MEDLINE | ID: mdl-34349971

ABSTRACT

A novel and practical desymmetrization tactic is described to access a new class of pibrentasvir prodrugs. The homotopic benzimidazoles of pibrentasvir (PIB) are differentiated via a one-pot di-Boc/mono-de-Boc selective N-Boc protection and formaldehyde adduct formation sequence, both enabled by crystallization-induced selectivity. The first step represents the only known application of the Horeau principle of statistical amplification for C 2-symmetric polyheterocycle regioselective functionalization. The resulting versatile intermediate is employed in the high-yielding preparation of several pibrentasvir prodrug candidates.

9.
J Med Chem ; 63(19): 11034-11044, 2020 10 08.
Article in English | MEDLINE | ID: mdl-32881503

ABSTRACT

A research program to discover solubilizing prodrugs of the HCV NS5A inhibitor pibrentasvir (PIB) identified phosphomethyl analog 2 and trimethyl-lock (TML) prodrug 9. The prodrug moiety is attached to a benzimidazole nitrogen atom via an oxymethyl linkage to allow for rapid and complete release of the drug for absorption following phosphate removal by intestinal alkaline phosphatase. These prodrugs have good hydrolytic stability properties and improved solubility compared to PIB, both in aqueous buffer (pH 7) and FESSIF (pH 5). TML prodrug 9 provided superior in vivo performance, delivering high plasma concentrations of PIB in PK studies conducted in mice, dogs, and monkeys. The improved dissolution properties of these phosphate prodrugs provide them the potential to simplify drug dosage forms for PIB-containing HCV therapy.


Subject(s)
Antiviral Agents/chemistry , Benzimidazoles/chemistry , Prodrugs/chemistry , Pyrrolidines/chemistry , Viral Nonstructural Proteins/antagonists & inhibitors , Animals , Antiviral Agents/pharmacokinetics , Antiviral Agents/pharmacology , Area Under Curve , Benzimidazoles/pharmacokinetics , Benzimidazoles/pharmacology , Dogs , Mice , Prodrugs/pharmacology , Pyrrolidines/pharmacokinetics , Pyrrolidines/pharmacology , Solubility
10.
J Org Chem ; 85(11): 7620-7632, 2020 06 05.
Article in English | MEDLINE | ID: mdl-32374998

ABSTRACT

A scalable endo-selective synthesis of 2,3,4,5-tetrasubstituted pyrrolidines via cycloaddition of nitroalkenes and azomethine ylides is reported using a P,N-type ferrocenyl ligand and [Cu(OTf)]2·C6H6. The robust method is tolerant of a wide range of functionalities, including rarely reported quaternary nitroalkene substitution and heteroaromatic and hindered ortho-substituted arenes on the azomethine ylide. Subsequent transformations highlight the utility of the method in the synthesis of densely functionalized small molecules suitable for fragment-based drug discovery and the cystic fibrosis C2-corrector clinical candidate ABBV-3221.

11.
ACS Med Chem Lett ; 10(11): 1543-1548, 2019 Nov 14.
Article in English | MEDLINE | ID: mdl-31749908

ABSTRACT

Cystic fibrosis (CF) is a genetic disorder that affects multiple tissues and organs. CF is caused by mutations in the CFTR gene, resulting in insufficient or impaired cystic fibrosis transmembrane conductance regulator (CFTR) protein. The deletion of phenylalanine at position 508 of the protein (F508del-CFTR) is the most common mutation observed in CF patients. The most effective treatments of these patients employ two CFTR modulator classes, correctors and potentiators. CFTR correctors increase protein levels at the cell surface; CFTR potentiators enable the functional opening of CFTR channels at the cell surface. Triple-combination therapies utilize two distinct corrector molecules (C1 and C2) to further improve the overall efficacy. We identified the need to develop a C2 corrector series that had the potential to be used in conjunction with our existing C1 corrector series and provide robust clinical efficacy for CF patients. The identification of a pyrrolidine series of CFTR C2 correctors and the structure-activity relationship of this series is described. This work resulted in the discovery and selection of (2S,3R,4S,5S)-3-(tert-butyl)-4-((2-methoxy-5-(trifluoromethyl)pyridin-3-yl)methoxy)-1-((S)-tetrahydro-2H-pyran-2-carbonyl)-5-(o-tolyl)pyrrolidine-2-carboxylic acid (ABBV/GLPG-3221), which was advanced to clinical trials.

12.
Org Lett ; 21(14): 5725-5727, 2019 07 19.
Article in English | MEDLINE | ID: mdl-31259557

ABSTRACT

An enabling preclinical synthetic route to cystic fibrosis candidate ABBV-2222 is described. Two stereoselective steps provide access to an aminochroman intermediate with excellent control, and a late-stage demethylation/difluoromethylation sequence provides efficient access to the target molecule.


Subject(s)
Benzoates/chemical synthesis , Benzoates/pharmacology , Benzopyrans/chemical synthesis , Benzopyrans/pharmacology , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Cystic Fibrosis/drug therapy , Benzoates/chemistry , Benzoates/therapeutic use , Benzopyrans/chemistry , Benzopyrans/therapeutic use , Chemistry Techniques, Synthetic , Cystic Fibrosis/metabolism , Methylation , Stereoisomerism
13.
J Org Chem ; 84(8): 4723-4734, 2019 04 19.
Article in English | MEDLINE | ID: mdl-30412402

ABSTRACT

ABBV-168 is a dihalogenated nucleotide under investigation for the treatment of hepatitis C virus. Three synthetic routes aimed at achieving the stereoselective installation of the C2' gem-Br,F substitution and subsequent Vorbruggen glycosylation were explored to prepare the penultimate nucleoside intermediate. Development culminated in a route to ABBV-168 featuring a de novo chromatography-free furanose synthesis, protecting group-directed Vorbruggen glycosylation, and highly selective phosphoramidation to furnish the API.


Subject(s)
Antiviral Agents/pharmacology , Hepacivirus/drug effects , Hepatitis C/drug therapy , Nucleotides/pharmacology , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Humans , Microbial Sensitivity Tests , Molecular Conformation , Nucleotides/chemical synthesis , Nucleotides/chemistry
14.
J Med Chem ; 61(4): 1436-1449, 2018 02 22.
Article in English | MEDLINE | ID: mdl-29251932

ABSTRACT

Cystic fibrosis (CF) is a multiorgan disease of the lungs, sinuses, pancreas, and gastrointestinal tract that is caused by a dysfunction or deficiency of the cystic fibrosis transmembrane conductance regulator (CFTR) protein, an epithelial anion channel that regulates salt and water balance in the tissues in which it is expressed. To effectively treat the most prevalent patient population (F508del mutation), two biomolecular modulators are required: correctors to increase CFTR levels at the cell surface, and potentiators to allow the effective opening of the CFTR channel. Despite approved potentiator and potentiator/corrector combination therapies, there remains a high need to develop more potent and efficacious correctors. Herein, we disclose the discovery of a highly potent series of CFTR correctors and the structure-activity relationship (SAR) studies that guided the discovery of ABBV/GLPG-2222 (22), which is currently in clinical trials in patients harboring the F508del CFTR mutation on at least one allele.


Subject(s)
Benzoates/pharmacology , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis/drug therapy , Drug Discovery , Amides/chemical synthesis , Animals , Benzoates/chemical synthesis , Benzoates/pharmacokinetics , Chromans/chemical synthesis , Dogs , Humans , Mutant Proteins/drug effects , Rats , Structure-Activity Relationship
15.
Org Lett ; 19(10): 2490-2493, 2017 05 19.
Article in English | MEDLINE | ID: mdl-28459592

ABSTRACT

The room temperature palladium-catalyzed cross-coupling of aromatic and heteroaromatic halides with Reformatsky reagents derived from 1-bromocyclopropanecarboxylates provides an exceptionally mild method for enolate α-arylation. The method is tolerant of a wide range of functionalities and dramatically shortens many of the existing routes to access widely used 1,1-disubstituted cyclopropanecarboxylate derivatives.

16.
Org Lett ; 18(11): 2624-7, 2016 06 03.
Article in English | MEDLINE | ID: mdl-27193994

ABSTRACT

The pentacyclic core skeleton of the cortistatins has been prepared in a stereoselective fashion by strategic use of an alkoxide-directed metallacycle-mediated annulative cross-coupling. This metal-centered tandem reaction delivers a polyunsaturated hydrindane and establishes the C13 stereodefined quaternary center with high levels of stereocontrol. Subsequent regio- and stereoselective global hydroboration results in the realization of the DE-trans ring fusion and a tertiary alcohol at C8. Establishment of the ABC-tricyclic subunit was then accomplished through phenolic oxidation/trans-acetalization, chemoselective reduction, regioselective cleavage, and intramolecular alkylation at C5.


Subject(s)
Neuropeptides/chemical synthesis , Acetals/chemistry , Alkylation , Cyclization , Indans/chemistry , Oxidation-Reduction , Stereoisomerism
17.
J Org Chem ; 77(10): 4503-15, 2012 May 18.
Article in English | MEDLINE | ID: mdl-22414181

ABSTRACT

This Perspective describes the discovery and development of silyl glyoxylates, a new family of conjunctive reagents for use in multicomponent coupling reactions. The selection of the nucleophilic and electrophilic components determines whether the silyl glyoxylate reagent will function as a synthetic equivalent to the dipolar glycolic acid synthon, the glyoxylate anion synthon, or the α-keto ester homoenolate synthon. The ability to select for any of these reaction modes has translated to excellent structural diversity in the derived three- and four-component coupling adducts. Preliminary findings on the development of catalytic reactions using these reagents are detailed, as are the design and discovery of new reactions directed toward particular functional group arrays embedded within bioactive natural products.


Subject(s)
Glyoxylates/chemistry , Indicators and Reagents/chemistry , Organosilicon Compounds/chemistry , Catalysis , Molecular Structure , Stereoisomerism
18.
J Am Chem Soc ; 134(5): 2766-74, 2012 Feb 08.
Article in English | MEDLINE | ID: mdl-22235773

ABSTRACT

A convergent synthesis of highly substituted and stereodefined dihydroindanes is described from alkoxide-directed Ti-mediated cross-coupling of internal alkynes with substituted 4-hydroxy-1,6-enynes (substrates that derive from 2-directional functionalization of readily available epoxy alcohol derivatives). In addition to describing a new and highly stereoselective approach to bimolecular [2 + 2 + 2] annulation that delivers products not available with other methods in this area of chemical reactivity, evidence is provided to support annulation by way of regioselective alkyne-alkyne coupling, followed by metal-centered [4 + 2] rather than stepwise alkene insertion and reductive elimination. Overall, the reaction proceeds with exquisite stereochemical control and defines a convenient, convergent, and enantiospecific entry to fused carbocycles of great potential value in target-oriented synthesis and medicinal chemistry.


Subject(s)
Indans/chemical synthesis , Organometallic Compounds/chemistry , Oxides/chemistry , Titanium/chemistry , Alkynes/chemistry , Cyclization , Indans/chemistry , Molecular Structure , Stereoisomerism
19.
Org Lett ; 13(12): 3206-9, 2011 Jun 17.
Article in English | MEDLINE | ID: mdl-21591684

ABSTRACT

A formal synthesis of leustroducsin B has been completed. The synthesis relies upon a recently developed Reformatsky/Claisen condensation of silyl glyoxylates and enantioenriched ß-lactones that establishes two of the molecule's three core stereocenters and permits further elaboration to an intermediate in Imanishi's synthesis via reliable chemistry (Prasad reduction, asymmetric pentenylation, Mitsunobu inversion).


Subject(s)
Glyoxylates/chemistry , Organosilicon Compounds/chemistry , Lactones/chemical synthesis , Lactones/chemistry , Molecular Structure , Organophosphorus Compounds/chemical synthesis , Organophosphorus Compounds/chemistry , Pyrones
20.
J Am Chem Soc ; 132(49): 17393-5, 2010 Dec 15.
Article in English | MEDLINE | ID: mdl-21087044

ABSTRACT

Reformatsky reagents react sequentially with silyl glyoxylates and ß-lactones to give highly functionalized Claisen condensation products. A heretofore undocumented instance of stereochemical 1,4-induction results in efficient transmission of ß-lactone stereochemistry to the emerging fully substituted stereocenter. Second-stage transformations reveal that the five heteroatom-containing functionalities embedded within the products are entirely chemo-differentiated, a circumstance that permits rapid assembly of the leustroducsin B core substructure.


Subject(s)
Glyoxylates/chemistry , Lactones/chemistry , Silanes/chemistry , Acylation , Organophosphorus Compounds/chemistry , Pyrones , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...