Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Opt Express ; 32(4): 5380-5396, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38439266

ABSTRACT

We present the development of a transportable laser frequency stabilization system with application to both optical clocks and a next-generation gravity mission (NGGM) in space. This effort leverages a 5-cm long cubic cavity with crystalline coatings operating at room temperature and with a center wavelength of 1064 nm. The cavity is integrated in a custom vacuum chamber with dedicated low-noise locking electronics. Our vacuum-mounted cavity and control system are well suited for space applications, exhibiting state-of-the-art noise performance while being resilient to radiation exposure, vibration, shock, and temperature variations. Furthermore, we demonstrate a robust means of automatically (re)locking the laser to the cavity when resonance is lost. We show that the mounted cavity is capable of reaching technology readiness level (TRL) 6, paving the way for high-performance ultrastable laser systems and eventually optical atomic clocks amenable to future satellite platforms.

2.
Sci Rep ; 13(1): 20510, 2023 11 22.
Article in English | MEDLINE | ID: mdl-37993595

ABSTRACT

This study introduces a functional exercise protocol to improve the identification for short hamstring muscle-tendon length (HMTL), a common contributor to crouch gait in patients with central neurological lesions (CNL). The functional exercise protocol incorporates a knee extension movement with hip in a flexed position, while standing on one leg (functional popliteal angle test) and walking with large steps to the current standard protocol (walking at comfortable speed and as fast as possible). The main aim was to establish whether the new protocol allows better determination of maximum HMTLs and diagnostics of short HMTL in patients with a CNL. Lower limb 3D marker position data from 39 patient limbs and 10 healthy limbs performing the exercises were processed in OpenSim to extract HMTLs. The new protocol provoked significantly larger HMTLs compared to the current standard protocol. The total number of limbs classified as having too short HMTLs reduced from 16 to 4 out of a total of 30 limbs walking in crouch. The new protocol improves determination of maximum HMTL, thereby improving short HMTL diagnostics and identification of patients in need of lengthening treatment. Inter-individual variability observed among patients, indicating the need to include all exercises for comprehensive diagnosis.


Subject(s)
Cerebral Palsy , Hamstring Muscles , Humans , Muscle, Skeletal , Gait , Tendons , Knee Joint
3.
Sensors (Basel) ; 23(15)2023 Aug 05.
Article in English | MEDLINE | ID: mdl-37571757

ABSTRACT

The prevalence of musculoskeletal symptoms (MSS) like neck and back pain is high among open-surgery surgeons. Prolonged working in the same posture and unfavourable postures are biomechanical risk factors for developing MSS. Ergonomic devices such as exoskeletons are possible solutions that can reduce muscle and joint load. To design effective exoskeletons for surgeons, one needs to quantify which neck and trunk postures are seen and how much support during actual surgery is required. Hence, this study aimed to establish the biomechanical profile of neck and trunk postures and neck and lumbar joint loads during open surgery (training). Eight surgical trainees volunteered to participate in this research. Neck and trunk segment orientations were recorded using an inertial measurement unit (IMU) system during open surgery (training). Neck and lumbar joint kinematics, joint moments and compression forces were computed using OpenSim modelling software and a musculoskeletal model. Histograms were used to illustrate the joint angle and load distribution of the neck and lumbar joints over time. During open surgery, the neck flexion angle was 71.6% of the total duration in the range of 10~40 degrees, and lumbar flexion was 68.9% of the duration in the range of 10~30 degrees. The normalized neck and lumbar flexion moments were 53.8% and 35.5% of the time in the range of 0.04~0.06 Nm/kg and 0.4~0.6 Nm/kg, respectively. Furthermore, the neck and lumbar compression forces were 32.9% and 38.2% of the time in the range of 2.0~2.5 N/kg and 15~20 N/kg, respectively. In contrast to exoskeletons used for heavy lifting tasks, exoskeletons designed for surgeons exhibit lower support torque requirements while additional degrees of freedom (DOF) are needed to accommodate combinations of neck and trunk postures.


Subject(s)
Joints , Lumbar Vertebrae , Lumbar Vertebrae/surgery , Lumbar Vertebrae/physiology , Joints/physiology , Posture/physiology , Lumbosacral Region/physiology , Neck/surgery , Biomechanical Phenomena/physiology
4.
Sensors (Basel) ; 22(21)2022 Oct 30.
Article in English | MEDLINE | ID: mdl-36366040

ABSTRACT

Surgeons are at high risk for developing musculoskeletal symptoms (MSS), like neck and back pain. Quantitative analysis of 3D neck and trunk movements during surgery can help to develop preventive devices such as exoskeletons. Inertial Measurement Units (IMU) and markerless motion capture methods are allowed in the operating room (OR) and are a good alternative for bulky optoelectronic systems. We aim to validate IMU and markerless methods against an optoelectronic system during a simulated surgery task. Intraclass correlation coefficient (ICC (2,1)), root mean square error (RMSE), range of motion (ROM) difference and Bland-Altman plots were used for evaluating both methods. The IMU-based motion analysis showed good-to-excellent (ICC 0.80-0.97) agreement with the gold standard within 2.3 to 3.9 degrees RMSE accuracy during simulated surgery tasks. The markerless method shows 5.5 to 8.7 degrees RMSE accuracy (ICC 0.31-0.70). Therefore, the IMU method is recommended over the markerless motion capture.


Subject(s)
Movement , Neck , Biomechanical Phenomena , Range of Motion, Articular , Motion
5.
Sensors (Basel) ; 22(13)2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35808456

ABSTRACT

The current gold standard of gait diagnostics is dependent on large, expensive motion-capture laboratories and highly trained clinical and technical staff. Wearable sensor systems combined with machine learning may help to improve the accessibility of objective gait assessments in a broad clinical context. However, current algorithms lack flexibility and require large training datasets with tedious manual labelling of data. The current study tests the validity of a novel machine learning algorithm for automated gait partitioning of laboratory-based and sensor-based gait data. The developed artificial intelligence tool was used in patients with a central neurological lesion and severe gait impairments. To build the novel algorithm, 2% and 3% of the entire dataset (567 and 368 steps in total, respectively) were required for assessments with laboratory equipment and inertial measurement units. The mean errors of machine learning-based gait partitions were 0.021 s for the laboratory-based datasets and 0.034 s for the sensor-based datasets. Combining reinforcement learning with a deep neural network allows significant reduction in the size of the training datasets to <5%. The low number of required training data provides end-users with a high degree of flexibility. Non-experts can easily adjust the developed algorithm and modify the training library depending on the measurement system and clinical population.


Subject(s)
Artificial Intelligence , Gait , Algorithms , Humans , Machine Learning , Neural Networks, Computer
6.
J Biomech ; 130: 110831, 2022 01.
Article in English | MEDLINE | ID: mdl-34741811

ABSTRACT

To establish the comparative effects of conservative interventions on modifying foot progression angle (FPA) in children and adults with orthopaedic and neurological disease was the main aim of the literature review. Pubmed, Embase, Cinahl, and Web of Science were systematically searched for studies evaluating the effects of conservative interventions on correcting the FPA. The study protocol was registered with PROSPERO (CRD42020143512). Two reviewers independently assessed studies for inclusion and quality. Studies that assessed conservative interventions that could have affected the FPA and objectively measured the FPA were included. Within group Mean Differences (MD) and Standardized Mean Differences (SMDs) of the interventions were calculated for the change in FPA and gait performance (walking speed, stride/step length) and clinical condition (pain). Intervention effects on FPA were synthesized via meta-analysis or qualitatively. 41 studies were identified. For patients with knee osteoarthritis gait training interventions (MD = 6.69° and MD = 16.06°) were significantly more effective than mechanical interventions (MD = 0.44°) in modifying the FPA towards in-toeing (p < 0.00001). Increasing or decreasing the FPA significantly improved pain in patients with medial knee OA. Results were inconclusive for the effectiveness of gait training and mechanical devices in patients with neurological diseases. Gait feedback training is more effective than external devices to produce lasting improvements in FPA, reduce pain, and maintain gait performance in patients with medial knee OA. However, in neurological patients, the effects of external devices on improvements in FPA depends on the interaction between patient-specific impairments and the technical properties of the external device.


Subject(s)
Orthopedics , Osteoarthritis, Knee , Adult , Biomechanical Phenomena , Child , Foot , Gait , Humans
7.
Acta Orthop ; 93: 11-28, 2022 01 03.
Article in English | MEDLINE | ID: mdl-34607499

ABSTRACT

Background and purpose - After initial clubfoot correction through Ponseti treatment, recurrence rates range from 26% to 48%. Even though various factors have been associated with increased recurrence risk, systematic assessments of the prognostic capacity of recurrence risk factors and their clinical relevance are lacking. Therefore we assessed clinically relevant prognostic factors for recurrent idiopathic clubfoot deformity after initial correction through Ponseti treatment. Methods - PubMed, Embase, Cinahl, and Web of Science were systematically searched for studies investigating the association between clinically relevant factors and recurrence rates. Prognostic factors were qualitatively assessed and included in the meta-analysis if ≥ 2 studies investigated the same factor and methods were comparable. Results - 34 articles were included in the qualitative synthesis, of which 22 were also included in the meta-analysis. Meta-analysis revealed that poor evertor muscle activity (OR = 255, 95% CI 30-2,190), brace non-compliance (OR = 10, CI 5-21), no additional stretching (OR = 31, CI 10-101), more casts (OR = 3.5, CI 1.6-7.8), lower education level of parents (OR = 1.8, CI 1.2-2.6), non-marital status of parents (OR = 1.8, CI 1.1-3.0), and higher Dimeglio scores (OR = 1.9, CI 1.2-3.3) were associated with higher recurrence rates. Interpretation - Brace non-compliance and poor evertor muscle activity have been identified as main recurrence risk factors and are therefore important to be closely monitored during clinical follow-up of clubfoot patients. Adding additional stretching during the bracing protocol might be promising in the quest to prevent relapse, but scientific evidence for clear clinical treatment recommendations is still limited.


Subject(s)
Clubfoot/therapy , Secondary Prevention/methods , Braces , Casts, Surgical , Combined Modality Therapy , Humans , Muscle Weakness/physiopathology , Patient Compliance , Prognosis , Plastic Surgery Procedures/methods , Recurrence , Risk Factors , Severity of Illness Index
8.
J Sport Rehabil ; 29(5): 657-674, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-31629333

ABSTRACT

CONTEXT: Plantar fasciitis is one of the most common foot injuries. Several mechanical treatment options, including shoe inserts, ankle-foot orthoses, tape, and shoes are used to relieve the symptoms of plantar fasciitis. OBJECTIVES: To investigate the effectiveness of mechanical treatment in the management of plantar fasciitis. EVIDENCE ACQUISITION: The review was reported in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analysis statement. A systematic search was performed in PubMed, CINAHL, Embase, and Cochrane up to March 8, 2018. Two independent reviewers screened eligible articles and assessed risk of bias using the Cochrane Collaboration's risk of bias tool. EVIDENCE SYNTHESIS: A total of 43 articles were included in the study, evaluating 2837 patients. Comparisons were made between no treatment and treatment with insoles, tape, ankle-foot orthoses including night splints and shoes. Tape, ankle-foot orthoses, and shoes were also compared with insoles. Follow-up ranged from 3 to 5 days to 12 months. Cointerventions were present in 26 studies. CONCLUSIONS: Mechanical treatment can be beneficial in relieving symptoms related to plantar fasciitis. Contoured full-length insoles are more effective in relieving symptoms related to plantar fasciitis than heel cups. Combining night splints or rocker shoes with insoles enhances improvement in pain relief and function compared with rocker shoes, night splints, or insoles alone. Taping is an effective short-term treatment. Future studies should aim to improve methodological quality using blinding, allocation concealment, avoid cointerventions, and use biomechanical measures of treatment effects.


Subject(s)
Bandages , Fasciitis, Plantar/therapy , Orthotic Devices , Shoes , Splints , Adrenal Cortex Hormones/therapeutic use , Adult , Aged , Aged, 80 and over , Anti-Inflammatory Agents/therapeutic use , Bias , Cohort Studies , Controlled Clinical Trials as Topic , Extracorporeal Shockwave Therapy , Female , Foot Orthoses , Humans , Male , Middle Aged , Treatment Outcome , Young Adult
9.
PLoS One ; 14(10): e0222388, 2019.
Article in English | MEDLINE | ID: mdl-31600227

ABSTRACT

Plantar fasciitis is a frequently occurring overuse injury of the foot. Shoes with a stiff rocker profile are a commonly prescribed treatment modality used to alleviate complaints associated with plantar fasciitis. In rocker shoes the apex position was moved proximally as compared to normal shoes, limiting the progression of the ground reaction forces (GRF) and peak plantarflexion moments during gait. A stiff sole minimizes dorsiflexion of the toes. The aim of this study was to investigate whether the biomechanical effects of rocker shoes lead to minimization of plantar aponeurosis (PA) strain during gait in patients with plantar fasciitis and in healthy young adults. 8 patients with plantar fasciitis (1 male, 7 females; mean age 55.0 ± 8.4 years) and 8 healthy young adults (8 females; mean age 24.1 ± 1.6 years) participated in the study. Each participant walked for 1 minute on an instrumented treadmill while wearing consecutively in random order shoes with a normal apex position (61.2 ± 2.8% apex) with flexible insole (FN), normal apex position with stiff insole (SN), proximal apex position (56.1 ± 2.6% apex) with flexible insole (FR) and proximal apex position with stiff insole (SR). Marker position data of the foot and lower leg and GRF were recorded. An OpenSim foot model was used to compute the change in PA length based on changes in foot segment positions during gait. The changes in PA length due to increases in Achilles tendon forces were computed based on previous data of a cadaver study. PA strain computed from both methods was not statistically different between shoe conditions. Peak Achilles tendon force, peak first metatarsophalangeal (MTP1) joint angle and peak plantarflexion moment were significantly lower when walking with the rocker shoe with a proximal apex position and a stiff insole for all subjects (p<.05). Changes in Achilles tendon forces during gait accounted for 65 ± 2% of the total PA strain. Rocker shoes with a stiff insole reduce peak dorsiflexion angles of the toes and plantar flexion moments, but not PA strain because the effects of a proximal apex position and stiff insole do not occur at the same time, but independently affect PA strain at 80-90% and 90-100% of the stance phase. Rocker shoes with an apex position of ~56% are insufficient to significantly reduce peak PA strain values in patients with plantar fasciitis and healthy young adults.


Subject(s)
Aponeurosis/physiopathology , Cumulative Trauma Disorders/therapy , Fasciitis, Plantar/therapy , Shoes , Achilles Tendon/physiopathology , Adult , Biomechanical Phenomena , Cumulative Trauma Disorders/physiopathology , Fasciitis, Plantar/physiopathology , Female , Foot/physiopathology , Gait/physiology , Humans , Male , Metatarsophalangeal Joint/physiopathology , Middle Aged , Walking/physiology
10.
Eur J Appl Physiol ; 119(2): 419-428, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30474739

ABSTRACT

PURPOSE: We examined the possibility that old adults use flexibility in joint coordination as a compensatory mechanism for the age-related decline in muscle strength when performing the sit-to-stand (STS) task repeatedly under high force and balance demands. METHOD: Young (n = 14, 22.4 ± 2.1) and old (n = 12, 70 ± 3.2) healthy adults performed repeated STSs under high and low force and balance demands. The balance demand was manipulated by reducing the base of support and the force demand by increasing body weight with a weight vest. Uncontrolled manifold analysis was used to quantify age differences in motor flexibility. RESULTS: While there were age-typical differences in kinematic STS strategies, flexibility in joint coordination was independent of age and task difficulty during repeated STSs. DISCUSSION: That simple manipulations of force and balance demands did not affect flexibility in joint coordination in old and young adults suggests that motor flexibility acts as a compensatory mechanism only at the limits of available muscle strength and balance abilities during STS movements. Intervention studies should identify how changes in specific neuromuscular functions affect flexibility in joint coordination during activities of daily living such as STS.


Subject(s)
Aging/physiology , Movement/physiology , Muscle Strength/physiology , Postural Balance/physiology , Range of Motion, Articular/physiology , Activities of Daily Living , Aged , Biomechanical Phenomena/physiology , Female , Humans , Male , Posture/physiology , Young Adult
11.
Eur J Appl Physiol ; 117(5): 955-967, 2017 May.
Article in English | MEDLINE | ID: mdl-28293798

ABSTRACT

PURPOSE: Our ability to flexibly coordinate the available degrees of freedom allows us to perform activities of daily living under various task constraints. Healthy old adults exhibit subclinical peripheral and central nervous system dysfunctions, possibly compromising the flexibility in inter-joint coordination during voluntary movements and the ability to adapt to varying task constraints. METHOD: We examined how healthy old (75.4 ± 5.2 years, n = 14) compared with young adults (24.3 ± 2 years, n = 15) make use of the available motor flexibility to adapt to physical and dexterity constraints during a rapid goal-directed reaching task. We manipulated physical and dexterity demands by changing, respectively, external resistance and target size. Motor flexibility was quantified by an uncontrolled manifold (UCM) analysis. RESULTS: We found that healthy young and old adults employ similar motor flexibility as quantified by the ratio between goal equivalent and non-goal equivalent variability (V Ratio) and were similarly able to adapt to increases in physical and dexterity demands during goal-directed rapid reaching (V Ratio: p = .092; young: 0.548 ± 0.113; old: 0.264 ± 0.117). Age affected end-effector kinematics. Motor flexibility and end-effector kinematics did not correlate. CONCLUSION: The data challenge the prevailing view that old age affects movement capabilities in general and provide specific evidence that healthy old adults preserve motor flexibility during a reaching task. Future studies applying UCM analysis should examine if experimental set-ups limit movement exploration, leaving possible age differences undetected.


Subject(s)
Aging/physiology , Isometric Contraction , Muscle, Skeletal/physiology , Range of Motion, Articular , Adult , Aged , Female , Humans , Male , Motor Skills , Muscle, Skeletal/growth & development , Reaction Time
12.
PLoS One ; 10(5): e0127017, 2015.
Article in English | MEDLINE | ID: mdl-25970465

ABSTRACT

Healthy humans are able to place light and heavy objects in small and large target locations with remarkable accuracy. Here we examine how dexterity demand and physical demand affect flexibility in joint coordination and end-effector kinematics when healthy young adults perform an upper extremity reaching task. We manipulated dexterity demand by changing target size and physical demand by increasing external resistance to reaching. Uncontrolled manifold analysis was used to decompose variability in joint coordination patterns into variability stabilizing the end-effector and variability de-stabilizing the end-effector during reaching. Our results demonstrate a proportional increase in stabilizing and de-stabilizing variability without a change in the ratio of the two variability components as physical demands increase. We interpret this finding in the context of previous studies showing that sensorimotor noise increases with increasing physical demands. We propose that the larger de-stabilizing variability as a function of physical demand originated from larger sensorimotor noise in the neuromuscular system. The larger stabilizing variability with larger physical demands is a strategy employed by the neuromuscular system to counter the de-stabilizing variability so that performance stability is maintained. Our findings have practical implications for improving the effectiveness of movement therapy in a wide range of patient groups, maintaining upper extremity function in old adults, and for maximizing athletic performance.


Subject(s)
Motor Activity , Adult , Arm/physiology , Biomechanical Phenomena , Elbow Joint/physiology , Feedback, Sensory , Female , Humans , Male , Physical Exertion , Psychomotor Performance , Range of Motion, Articular , Shoulder Joint/physiology , Wrist Joint/physiology , Young Adult
13.
J Phys Chem B ; 119(6): 2711-25, 2015 Feb 12.
Article in English | MEDLINE | ID: mdl-25393885

ABSTRACT

With hydrogen bonding of the amino group of aniline-d5 we can identify the roles of Fermi enhanced combination and overtone states in intramolecular vibrational re-distribution (IVR) pathways for N-H stretching excitations. Using linear Fourier transform infrared (FT-IR) spectroscopy, ultrafast one- and two-color IR-pump-IR-probe spectroscopy, and femtosecond two-dimensional IR spectroscopy, we can identify the primary accepting modes for N-H stretching excitations. In particular, a key role is played by the δ(NH2) bending degree of freedom, either via its δ = 2 overtone state or via a combination state with the ν(C═C) ring stretching mode. No significant transient population in these Fermi enhanced combination/overtone states can be observed, a consequence of similar decay rates of these Fermi enhanced combination/overtone states and of the N-H stretching states. A similar magnitude of the transient response of the two fingerprint modes regardless of direct excitation of the Fermi enhanced combination/overtone levels or of the N-H stretching states suggests an underlying coupling mechanism facilitating common IVR pathways. This mechanism is expected to be of general importance for other organic compounds with hydrogen-bonded amino groups, including DNA bases.

14.
PLoS One ; 8(10): e77760, 2013.
Article in English | MEDLINE | ID: mdl-24204952

ABSTRACT

Sit-to-stand is a fundamental activity of daily living, which becomes increasingly difficult with advancing age. Due to severe loss of leg strength old adults are required to change the way they rise from a chair and maintain stability. Here we examine whether old compared to young adults differently prioritize task-important performance variables and whether there are age-related differences in the use of available motor flexibility. We applied the uncontrolled manifold analysis to decompose trial-to-trial variability in joint kinematics into variability that stabilizes and destabilizes task-important performance variables. Comparing the amount of variability stabilizing and destabilizing task-important variables enabled us to identify the variable of primary importance for the task. We measured maximal isometric voluntary force of three muscle groups in the right leg. Independent of age and muscle strength, old and young adults similarly prioritized stability of the ground reaction force vector during sit-to-stand. Old compared to young adults employed greater motor flexibility, stabilizing ground reaction forces during sit-to-sand. We concluded that freeing those degrees of freedom that stabilize task-important variables is a strategy used by the aging neuromuscular system to compensate for strength deficits.


Subject(s)
Aging/physiology , Arm/physiology , Head Movements/physiology , Joints/physiology , Leg/physiology , Motor Skills/physiology , Range of Motion, Articular/physiology , Adult , Aged , Biomechanical Phenomena , Female , Humans , Male , Muscle Strength , Prognosis , Reaction Time , Young Adult
15.
J Phys Chem B ; 117(45): 14009-17, 2013 Nov 14.
Article in English | MEDLINE | ID: mdl-24127664

ABSTRACT

NH and OH stretching excitations of hydrated double-stranded DNA oligomers containing guanine-cytosine (GC) base pairs in a Watson-Crick geometry are studied by two-dimensional (2D) infrared spectroscopy. The 2D spectra measured at a low hydration level (∼4 water molecules/base pair) are dominated by NH stretch contributions from the NH2 groups of G and C and the NH group of G. Partially hydrated NH2 groups display red-shifted NH stretch frequencies and a mixing of the wave functions of the two local NH oscillators via the mechanical vibrational coupling. The NH stretch lifetimes are of the order of 200-300 fs. Weak couplings exist between NH stretch oscillators within a base pair, while interactions between neighboring GC pairs in the double helix are negligible. The absence of spectral diffusion on a 1 ps time scale suggests a relatively rigid structure of the hydrogen bonds between DNA and residual water molecules. 2D spectra recorded with fully hydrated DNA oligomers exhibit NH and OH stretch contributions with a weak influence of water fluctuations on the NH stretch lineshapes. The femtosecond spectral diffusion of OH stretch excitations is slower than that in bulk H2O and originates from structural fluctuations of the water shell and the formation of a vibrationally hot ground state by vibrational relaxation. We compare our findings with measurements on hydrated adenine-thymine DNA oligomers and anhydrous GC base pairs in solution.


Subject(s)
Cytosine/chemistry , DNA/metabolism , Guanine/chemistry , Spectrophotometry, Infrared , Base Pairing , DNA/chemistry , Hydrogen/chemistry , Hydrogen Bonding , Nitrogen/chemistry , Water/chemistry
16.
J Phys Chem B ; 117(49): 15843-55, 2013 Dec 12.
Article in English | MEDLINE | ID: mdl-24000972

ABSTRACT

Hydrogen bonding of the amino group of aniline-d5 results in a huge enhancement of the NH2 bending overtone absorption strength, mainly attributed to the Fermi resonance effect. A quantitative analysis is presented, using a hybrid mode representation and encompassing experimental data on aniline with 0, 1, or 2 hydrogen bonds to dimethylsulfoxide (DMSO). Changes in enthalpy, hydrogen-bonding-induced frequency shifts, and the transition dipole moment increase of the local N-H stretching oscillator all demonstrate that the hydrogen bond is strongest in the single hydrogen-bonded complex. Linear IR overtone spectra show that the oscillator strength decreases upon hydrogen bonding for the N-H stretching overtones, which is opposite to the effect on the fundamental N-H stretching transitions. Polarization resolved 2D-IR spectra provide detailed information on the N-H stretching overtone manifold and support the relative orientations of the various IR transitions.


Subject(s)
Aniline Compounds/chemistry , Spectrophotometry, Infrared , Dimethyl Sulfoxide/chemistry , Hydrogen Bonding , Kinetics
17.
J Phys Chem A ; 117(3): 594-606, 2013 Jan 24.
Article in English | MEDLINE | ID: mdl-23234439

ABSTRACT

We explore the N-H stretching vibrations of adenosine-thymidine base pairs in chloroform solution with linear and nonlinear infrared spectroscopy. Based on estimates from NMR measurements and ab initio calculations, we conclude that adenosine and thymidine form hydrogen bonded base pairs in Watson-Crick, reverse Watson-Crick, Hoogsteen, and reverse Hoogsteen configurations with similar probability. Steady-state concentration and temperature dependent linear FT-IR studies, including H/D exchange experiments, reveal that these hydrogen-bonded base pairs have complex N-H/N-D stretching spectra with a multitude of spectral components. Nonlinear 2D-IR spectroscopic results, together with IR-pump-IR-probe measurements, as also corroborated by ab initio calculations, reveal that the number of N-H stretching transitions is larger than the total number of N-H stretching modes. This is explained by couplings to other modes, such as an underdamped low-frequency hydrogen-bond mode, and a Fermi resonance with NH(2) bending overtone levels of the adenosine amino-group. Our results demonstrate that modeling based on local N-H stretching vibrations only is not sufficient and call for further refinement of the description of the N-H stretching manifolds of nucleic acid base pairs of adenosine and thymidine, incorporating a multitude of couplings with fingerprint and low-frequency modes.


Subject(s)
Adenosine/chemistry , Quantum Theory , Thymidine/chemistry , Base Pairing , Hydrogen Bonding , Magnetic Resonance Spectroscopy , Solutions , Spectroscopy, Fourier Transform Infrared , Vibration
18.
J Phys Chem A ; 116(29): 7636-44, 2012 Jul 26.
Article in English | MEDLINE | ID: mdl-22724894

ABSTRACT

The N-H stretching vibrations of adenine, one of the building blocks of DNA, are studied by combining infrared absorption and nonlinear two-dimensional infrared spectroscopy with ab initio calculations. We determine diagonal and off-diagonal anharmonicities of N-H stretching vibrations in chemically modified adenosine monomer dissolved in chloroform. For the single-quantum excitation manifold, the normal mode picture with symmetric and asymmetric NH(2) stretching vibrations is fully appropriate. For the two-quantum excitation manifold, however, the interplay between intermode coupling and frequency shifts due to a large diagonal anharmonicity leads to a situation where strong mixing does not occur. We compare our findings with previously reported values obtained on overtone spectroscopy of coupled hydrogen stretching oscillators.


Subject(s)
Adenosine/chemistry , Hydrogen/chemistry , Nitrogen/chemistry , Chloroform/chemistry , DNA/chemistry , Hydrogen Bonding , Kinetics , Models, Chemical , Molecular Structure , Quantum Theory , Solutions , Spectrophotometry, Infrared , Thermodynamics , Time Factors , Vibration , Water/chemistry
19.
J Phys Chem Lett ; 3(23): 3646-51, 2012 Dec 06.
Article in English | MEDLINE | ID: mdl-26291000

ABSTRACT

Structural and functional properties of phospholipids are strongly influenced by dynamics of their hydration shells. Here, we show that local water pools as small as three water molecules around the polar headgroups in phospholipid reverse micelles (dioleoylphosphatidylcholine, DOPC) serve as efficient sinks of excess energy released during vibrational relaxation. Transient two-dimensional (2D) infrared spectra of OH stretching excitations of H2O shells demonstrate a subpicosecond buildup of a hot water ground state, in which excess energy is randomized in low-frequency modes. An analysis of center line slopes of the 2D spectra reveals kinetics of energy dissipation that are significantly faster than structural fluctuations of the water pool and remain unchanged at intermediate hydration levels between three and eight water molecules per polar headgroup. Our results suggest that confined small water pools in biomolecular systems are sufficient to dissipate excess energy originating from the decay of electronic or vibrational excitations.

SELECTION OF CITATIONS
SEARCH DETAIL
...