Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Cancers (Basel) ; 15(17)2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37686604

ABSTRACT

The multi-kinase inhibitor dasatinib has been implicated to be effective in pre-B-cell receptor (pre-BCR)-positive acute lymphoblastic leukemia (ALL) expressing the E2A-PBX1 fusion oncoprotein. The TGFß signaling pathway is involved in a wide variety of cellular processes, including embryonic development and cell homeostasis, and it can have dual roles in cancer: suppressing tumor growth at early stages and mediating tumor progression at later stages. In this study, we identified the upregulation of the TGFß signaling pathway in our previously generated human dasatinib-resistant pre-BCR+/E2A-PBX1+ ALL cells using global transcriptomic analysis. We confirm the upregulation of the TGFß pathway member SMAD3 at the transcriptional and translational levels in dasatinib-resistant pre-BCR+/E2A-PBX1+ ALL cells. Hence, dasatinib blocks, at least partially, TGFß-induced SMAD3 phosphorylation in several B-cell precursor (BCP) ALL cell lines as well as in dasatinib-resistant pre-BCR+/E2A-PBX1+ ALL cells. Activation of the TGFß signaling pathway by TGF-ß1 leads to growth inhibition by cell cycle arrest at the G0/G1 stage, increase in apoptosis and transcriptional changes of SMAD-targeted genes, e.g. c-MYC downregulation, in pre-BCR+/E2A-PBX1+ ALL cells. These results provide a better understanding about the role that the TGFß signaling pathway plays in leukemogenesis of BCP-ALL as well as in secondary drug resistance to dasatinib.

2.
Leukemia ; 37(5): 1018-1027, 2023 05.
Article in English | MEDLINE | ID: mdl-37024521

ABSTRACT

Despite routine use of DNA-hypomethylating agents (HMAs) in AML/MDS therapy, their mechanisms of action are not yet unraveled. Pleiotropic effects of HMAs include global methylome and transcriptome changes. We asked whether in blasts and T-cells from AML patients HMA-induced in vivo demethylation and remethylation occur randomly or non-randomly, and whether gene demethylation is associated with gene induction. Peripheral blood AML blasts from patients receiving decitabine (20 mg/m2 day 1-5) were serially isolated for methylome analyses (days 0, 8 and 15, n = 28) and methylome-plus-transcriptome analyses (days 0 and 8, n = 23), respectively. T-cells were isolated for methylome analyses (days 0 and 8; n = 16). We noted massive, non-random demethylation at day 8, which was variable between patients. In contrast, T-cells disclosed a thousand-fold lesser, random demethylation, indicating selectivity of the demethylation for the malignant blasts. The integrative analysis of DNA demethylation and transcript induction revealed 87 genes displaying a significant inverse correlation, e.g. the tumor suppressor gene IFI27, whose derepression was validated in two AML cell lines. These results support HMA-induced, non-random early in vivo demethylation events in AML blasts associated with gene induction. Larger patient cohorts are needed to determine whether a demethylation signature may be predictive for response to this treatment.


Subject(s)
Epigenome , Leukemia, Myeloid, Acute , Humans , Decitabine/pharmacology , Transcriptome , DNA Methylation , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , DNA/metabolism
3.
Blood Cancer J ; 12(8): 122, 2022 08 22.
Article in English | MEDLINE | ID: mdl-35995769

ABSTRACT

The prognosis of AML patients with adverse genetics, such as a complex, monosomal karyotype and TP53 lesions, is still dismal even with standard chemotherapy. DNA-hypomethylating agent monotherapy induces an encouraging response rate in these patients. When combined with decitabine (DAC), all-trans retinoic acid (ATRA) resulted in an improved response rate and longer overall survival in a randomized phase II trial (DECIDER; NCT00867672). The molecular mechanisms governing this in vivo synergism are unclear. We now demonstrate cooperative antileukemic effects of DAC and ATRA on AML cell lines U937 and MOLM-13. By RNA-sequencing, derepression of >1200 commonly regulated transcripts following the dual treatment was observed. Overall chromatin accessibility (interrogated by ATAC-seq) and, in particular, at motifs of retinoic acid response elements were affected by both single-agent DAC and ATRA, and enhanced by the dual treatment. Cooperativity regarding transcriptional induction and chromatin remodeling was demonstrated by interrogating the HIC1, CYP26A1, GBP4, and LYZ genes, in vivo gene derepression by expression studies on peripheral blood blasts from AML patients receiving DAC + ATRA. The two drugs also cooperated in derepression of transposable elements, more effectively in U937 (mutated TP53) than MOLM-13 (intact TP53), resulting in a "viral mimicry" response. In conclusion, we demonstrate that in vitro and in vivo, the antileukemic and gene-derepressive epigenetic activity of DAC is enhanced by ATRA.


Subject(s)
Leukemia, Myeloid, Acute , Decitabine/pharmacology , Decitabine/therapeutic use , Humans , Karyotype , Karyotyping , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Tretinoin/pharmacology , Tretinoin/therapeutic use
4.
Leukemia ; 35(7): 1873-1889, 2021 07.
Article in English | MEDLINE | ID: mdl-33958699

ABSTRACT

Aberrant DNA methylation plays a pivotal role in tumor development and progression. DNA hypomethylating agents (HMA) constitute a class of drugs which are able to reverse DNA methylation, thereby triggering the re-programming of tumor cells. The first-generation HMA azacitidine and decitabine have now been in standard clinical use for some time, offering a valuable alternative to previous treatments in acute myeloid leukemia and myelodysplastic syndromes, so far particularly in older, medically non-fit patients. However, the longer we use these drugs, the more we are confronted with the (almost inevitable) development of resistance. This review provides insights into the mode of action of HMA, mechanisms of resistance to this treatment, and strategies to overcome HMA resistance including next-generation HMA and HMA-based combination therapies.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , DNA Methylation/drug effects , Drug Resistance, Neoplasm/drug effects , Leukemia, Myeloid, Acute/drug therapy , Myelodysplastic Syndromes/drug therapy , Animals , Humans , Treatment Outcome
6.
Clin Epigenetics ; 13(1): 77, 2021 04 12.
Article in English | MEDLINE | ID: mdl-33845873

ABSTRACT

BACKGROUND: Mutations in the EZH2 gene are recurrently found in patients with myeloid neoplasms and are associated with a poor prognosis. We aimed to characterize genetic and epigenetic alterations of EZH2 in 58 patients (51 with acute myeloid leukemia and 7 with myelodysplastic or myeloproliferative neoplasms) by integrating data on EZH2 mutational status, co-occurring mutations, and EZH2 copy number status with EZH2 protein expression, histone H3K27 trimethylation, and EZH2 promoter methylation. RESULTS: EZH2 was mutated in 6/51 acute myeloid leukemia patients (12%) and 7/7 patients with other myeloid neoplasms. EZH2 mutations were not overrepresented in patients with chromosome 7q deletions or losses. In acute myeloid leukemia patients, EZH2 mutations frequently co-occurred with CEBPA (67%), ASXL1 (50%), TET2 and RAD21 mutations (33% each). In EZH2-mutated patients with myelodysplastic or myeloproliferative neoplasms, the most common co-mutations were in ASXL1 (100%), NRAS, RUNX1, and STAG2 (29% each). EZH2 mutations were associated with a significant decrease in EZH2 expression (p = 0.0002), which was similar in patients with chromosome 7 aberrations and patients with intact chromosome 7. An association between EZH2 protein expression and H3K27 trimethylation was observed in EZH2-unmutated patients (R2 = 0.2, p = 0.01). The monoallelic state of EZH2 was not associated with EZH2 promoter hypermethylation. In multivariable analyses, EZH2 mutations were associated with a trend towards an increased risk of death (hazard ratio 2.51 [95% confidence interval 0.87-7.25], p = 0.09); similarly, low EZH2 expression was associated with elevated risk (hazard ratio 2.54 [95% confidence interval 1.07-6.04], p = 0.04). CONCLUSIONS: Perturbations of EZH2 activity in AML/MDS occur on different, genetic and non-genetic levels. Both low EZH2 protein expression and, by trend, EZH2 gene mutations predicted inferior overall survival of AML patients receiving standard chemotherapy.


Subject(s)
DNA Copy Number Variations/genetics , Enhancer of Zeste Homolog 2 Protein/genetics , Gene Expression/genetics , Histones/genetics , Leukemia, Myeloid, Acute/genetics , Mutation/genetics , Myelodysplastic Syndromes/genetics , Adult , Aged , Aged, 80 and over , Cohort Studies , Female , Humans , Male , Middle Aged , Prognosis , Young Adult
7.
Cancer Res ; 81(4): 834-846, 2021 02 15.
Article in English | MEDLINE | ID: mdl-33203699

ABSTRACT

Hypomethylating agents (HMA) have become the backbone of nonintensive acute myeloid leukemia/myelodysplastic syndrome (AML/MDS) treatment, also by virtue of their activity in patients with adverse genetics, for example, monosomal karyotypes, often with losses on chromosome 7, 5, or 17. No comparable activity is observed with cytarabine, a cytidine analogue without DNA-hypomethylating properties. As evidence exists for compounding hypermethylation and gene silencing of hemizygous tumor suppressor genes (TSG), we thus hypothesized that this effect may preferentially be reversed by the HMAs decitabine and azacitidine. An unbiased RNA-sequencing approach was developed to interrogate decitabine-induced transcriptome changes in AML cell lines with or without a deletion of chromosomes 7q, 5q or 17p. HMA treatment preferentially upregulated several hemizygous TSG in this genomic region, significantly derepressing endogenous retrovirus (ERV)3-1, with promoter demethylation, enhanced chromatin accessibility, and increased H3K4me3 levels. Decitabine globally reactivated multiple transposable elements, with activation of the dsRNA sensor RIG-I and interferon regulatory factor (IRF)7. Induction of ERV3-1 and RIG-I mRNA was also observed during decitabine treatment in vivo in serially sorted peripheral blood AML blasts. In patient-derived monosomal karyotype AML murine xenografts, decitabine treatment resulted in superior survival rates compared with cytarabine. Collectively, these data demonstrate preferential gene derepression and ERV reactivation in AML with chromosomal deletions, providing a mechanistic explanation that supports the clinical observation of superiority of HMA over cytarabine in this difficult-to-treat patient group. SIGNIFICANCE: These findings unravel the molecular mechanism underlying the intriguing clinical activity of HMAs in AML/MDS patients with chromosome 7 deletions and other monosomal karyotypes.See related commentary by O'Hagan et al., p. 813.


Subject(s)
Leukemia, Myeloid, Acute , Animals , Azacitidine/pharmacology , Decitabine/pharmacology , Epigenesis, Genetic , Humans , Karyotype , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Mice , Monosomy
8.
Cancers (Basel) ; 12(5)2020 05 25.
Article in English | MEDLINE | ID: mdl-32466316

ABSTRACT

Rodent models have contributed significantly to the understanding of haematological malignancies. One important model system in this context are patient-derived xenografts (PDX). In the current study, we examined 20 acute leukaemia PDX models for growth behaviour, infiltration in haemopoietic organs and sensitivity towards cytarabine. PDX were injected intratibially (i.t.), intrasplenicaly (i.s.) or subcutaneously (s.c.) into immune compromised mice. For 18/20 models the engraftment capacity was independent of the implantation site. Two models could exclusively be propagated in one or two specific settings. The implantation site did influence tumour growth kinetics as median overall survival differed within one model depending on the injection route. The infiltration pattern was similar in i.t. and i.s. models. In contrast to the s.c. implantation, only one model displayed circulating leukaemic cells outside of the locally growing tumour mass. Cytarabine was active in all four tested models. Nevertheless, the degree of sensitivity was specific for an individual model and implantation site. In summary, all three application routes turned out to be feasible for the propagation of PDX. Nevertheless, the distinct differences between the settings highlight the need for well characterized platforms to ensure the meaningful interpretation of data generated using those powerful tools.

9.
Chembiochem ; 21(16): 2329-2347, 2020 08 17.
Article in English | MEDLINE | ID: mdl-32227662

ABSTRACT

Lysine-specific demethylase 1 (LSD1) has evolved as a promising therapeutic target for cancer treatment, especially in acute myeloid leukaemia (AML). To approach the challenge of site-specific LSD1 inhibition, we developed an enzyme-prodrug system with the bacterial nitroreductase NfsB (NTR) that was expressed in the virally transfected AML cell line THP1-NTR+ . The cellular activity of the NTR was proven with a new luminescent NTR probe. We synthesised a diverse set of nitroaromatic prodrugs that by design do not affect LSD1 and are reduced by the NTR to release an active LSD1 inhibitor. The emerging side products were differentially analysed using negative controls, thereby revealing cytotoxic effects. The 2-nitroimidazolyl prodrug of a potent LSD1 inhibitor emerged as one of the best prodrug candidates with a pronounced selectivity window between wild-type and transfected THP1 cells. Our prodrugs are selectively activated and release the LSD1 inhibitor locally, proving their suitability for future targeting approaches.


Subject(s)
Drug Liberation , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Histone Demethylases/antagonists & inhibitors , Leukemia, Myeloid, Acute/pathology , Nitroreductases/metabolism , Prodrugs/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Drug Design , Enzyme Inhibitors/pharmacology , Humans , Transfection
12.
Leukemia ; 33(6): 1411-1426, 2019 06.
Article in English | MEDLINE | ID: mdl-30679800

ABSTRACT

LSD1 has emerged as a promising epigenetic target in the treatment of acute myeloid leukemia (AML). We used two murine AML models based on retroviral overexpression of Hoxa9/Meis1 (H9M) or MN1 to study LSD1 loss of function in AML. The conditional knockout of Lsd1 resulted in differentiation with both granulocytic and monocytic features and increased ATRA sensitivity and extended the survival of mice with H9M-driven AML. The conditional knockout led to an increased expression of multiple genes regulated by the important myeloid transcription factors GFI1 and PU.1. These include the transcription factors GFI1B and IRF8. We also compared the effect of different irreversible and reversible inhibitors of LSD1 in AML and could show that only tranylcypromine derivatives were capable of inducing a differentiation response. We employed a conditional knock-in model of inactive, mutant LSD1 to study the effect of only interfering with LSD1 enzymatic activity. While this was sufficient to initiate differentiation, it did not result in a survival benefit in mice. Hence, we believe that targeting both enzymatic and scaffolding functions of LSD1 is required to efficiently treat AML. This finding as well as the identified biomarkers may be relevant for the treatment of AML patients with LSD1 inhibitors.


Subject(s)
Cell Differentiation/drug effects , DNA-Binding Proteins/metabolism , Histone Demethylases/antagonists & inhibitors , Leukemia, Myeloid, Acute/pathology , Proto-Oncogene Proteins/metabolism , Trans-Activators/metabolism , Transcription Factors/metabolism , Tranylcypromine/pharmacology , Animals , Antidepressive Agents/pharmacology , DNA-Binding Proteins/genetics , Gene Expression Regulation, Leukemic , Histone Demethylases/genetics , Histone Demethylases/metabolism , Histone Demethylases/physiology , Humans , Interferon Regulatory Factors/genetics , Interferon Regulatory Factors/metabolism , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Mice , Mice, Knockout , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Proto-Oncogene Proteins/genetics , Trans-Activators/genetics , Transcription Factors/genetics , Tumor Cells, Cultured
13.
Leukemia ; 33(4): 945-956, 2019 04.
Article in English | MEDLINE | ID: mdl-30470836

ABSTRACT

DNA methyltransferase inhibitors (DNMTi) approved for older AML patients are clinically tested in combination with histone deacetylase inhibitors (HDACi). The mechanism of action of these drugs is still under debate. In colon cancer cells, 5-aza-2'-deoxycytidine (DAC) can downregulate oncogenes and metabolic genes by reversing gene body DNA methylation, thus implicating gene body methylation as a novel drug target. We asked whether DAC-induced gene body demethylation in AML cells is also associated with gene repression, and whether the latter is enhanced by HDACi.Transcriptome analyses revealed that a combined treatment with DAC and the HDACi panobinostat or valproic acid affected significantly more transcripts than the sum of the genes regulated by either treatment alone, demonstrating a quantitative synergistic effect on genome-wide expression in U937 cells. This effect was particularly striking for downregulated genes. Integrative methylome and transcriptome analyses showed that a massive downregulation of genes, including oncogenes (e.g., MYC) and epigenetic modifiers (e.g., KDM2B, SUV39H1) often overexpressed in cancer, was associated predominantly with gene body DNA demethylation and changes in acH3K9/27. These findings have implications for the mechanism of action of combined epigenetic treatments, and for a better understanding of responses in trials where this approach is clinically tested.


Subject(s)
DNA Methylation , Decitabine/pharmacology , Drug Synergism , Enzyme Inhibitors/pharmacology , Gene Expression Regulation, Neoplastic , Histone Deacetylase Inhibitors/pharmacology , Leukemia, Myeloid, Acute/genetics , Biomarkers, Tumor/genetics , DNA Modification Methylases/antagonists & inhibitors , Demethylation , Down-Regulation , Epigenesis, Genetic , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/pathology , Panobinostat/pharmacology , Valproic Acid/pharmacology
14.
Eur J Med Chem ; 144: 52-67, 2018 Jan 20.
Article in English | MEDLINE | ID: mdl-29247860

ABSTRACT

FAD-dependent lysine-specific demethylase 1 (LSD1) is overexpressed or deregulated in many cancers such as AML and prostate cancer and hence is a promising anticancer target with first inhibitors in clinical trials. Clinical candidates are N-substituted derivatives of the dual LSD1-/monoamine oxidase-inhibitor tranylcypromine (2-PCPA) with a basic amine function in the N-substituent. These derivatives are selective over monoamine oxidases. So far, only very limited information on structure-activity studies about this important class of LSD1 inhibitors is published in peer reviewed journals. Here, we show that N-substituted 2-PCPA derivatives without a basic function or even a polar group are still potent inhibitors of LSD1 in vitro and effectively inhibit colony formation of leukemic cells in culture. Yet, these lipophilic inhibitors also block the structurally related monoamine oxidases (MAO-A and MAO-B), which may be of interest for the treatment of neurodegenerative disorders, but this property is undesired for applications in cancer treatment. The introduction of a polar, non-basic function led to optimized structures that retain potent LSD1 inhibitors but exhibit selectivity over MAOs and are highly potent in the suppression of colony formation of cultured leukemic cells. Cellular target engagement is shown via a Cellular Thermal Shift Assay (CETSA) for LSD1.


Subject(s)
Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Histone Demethylases/antagonists & inhibitors , Tranylcypromine/analogs & derivatives , Tranylcypromine/pharmacology , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Differentiation/drug effects , Cell Line, Tumor , Histone Demethylases/metabolism , Humans , Leukemia/drug therapy , Leukemia/metabolism , Leukemia/pathology , Mice , Models, Molecular , Monoamine Oxidase Inhibitors/chemistry , Monoamine Oxidase Inhibitors/pharmacology , Structure-Activity Relationship
15.
Curr Opin Hematol ; 24(2): 89-98, 2017 03.
Article in English | MEDLINE | ID: mdl-28099271

ABSTRACT

PURPOSE OF REVIEW: Adverse karyotype acute myeloid leukemia is a disease particularly of older patients, but also observed in younger patients. Despite all efforts, standard chemotherapy is still generally applied in fit patients, as already for decades, and for nearly all different subtypes of acute myeloid leukemia. Lack of more specifically targeted therapy and the often older age of the patients are complicating treatment, and in the subgroup of patients achieving a complete remission, the strikingly high frequency of relapse is a characteristic of this disease. This review aims to give an overview of current treatment approaches as well as emerging therapies. RECENT FINDINGS: Currently, the approach of a targeted therapy specific to the genetic and/or epigenetic aberrations detected in the individual patient is still not possible, and a 'one treatment fits all' course of action is still used, with allografting as curative consolidation. However, first immunotherapeutic approaches are emerging as treatment options and first phase 1 and 2 studies are described. SUMMARY: Treatment of acute myeloid leukemia with adverse karyotype is still not individualized, most treatment options currently not being curative. This can change in the near future, but recent findings will have to be implemented into larger phase 3 studies before being standard of care.


Subject(s)
Abnormal Karyotype , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/therapy , Age Factors , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Chromosome Aberrations , Clinical Trials as Topic , Combined Modality Therapy , Epigenesis, Genetic/drug effects , Hematopoietic Stem Cell Transplantation , Humans , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/mortality , Molecular Targeted Therapy , Mutation , Remission Induction , Standard of Care , Treatment Outcome
16.
Epigenetics ; 11(12): 858-870, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27846368

ABSTRACT

Non-small cell lung cancer (NSCLC) still constitutes the most common cancer-related cause of death worldwide. All efforts to introduce suitable treatment options using chemotherapeutics or targeted therapies have, up to this point, failed to exhibit a substantial effect on the 5-year-survival rate. The involvement of epigenetic alterations in the evolution of different cancers has led to the development of epigenetics-based therapies, mainly targeting DNA methyltransferases (DNMTs) and histone-modifying enzymes. So far, their greatest success stories have been registered in hematologic neoplasias. As the effects of epigenetic single agent treatment of solid tumors have been limited, the investigative focus now lies on combination therapies of epigenetically active agents with conventional chemotherapy, immunotherapy, or kinase inhibitors. This review includes a short overview of the most important preclinical approaches as well as an extensive discussion of clinical trials using epigenetic combination therapies in NSCLC, including ongoing trials. Thus, we are providing an overview of what lies ahead in the field of epigenetic combinatory therapies of NSCLC in the coming years.


Subject(s)
Carcinoma, Non-Small-Cell Lung/therapy , DNA Methylation/genetics , Epigenesis, Genetic , Histone Deacetylase Inhibitors/therapeutic use , Carcinoma, Non-Small-Cell Lung/genetics , Combined Modality Therapy , DNA Modification Methylases/antagonists & inhibitors , Humans , Immunotherapy
17.
BMC Cancer ; 15: 947, 2015 Dec 16.
Article in English | MEDLINE | ID: mdl-26675484

ABSTRACT

BACKGROUND: The receptor tyrosine kinase (RTK) EGFR is overexpressed and mutated in NSCLC. These mutations can be targeted by RTK inhibitors (TKIs) such as erlotinib. Chromatin-modifying agents may offer a novel therapeutic approach by sensitizing tumor cells to TKIs. METHODS: The NSCLC cell lines HCC827 (EGFR mutant, adenocarcinoma), A549 (EGFR wt, adenocarcinoma) and NCI-H460 (EGFR wt, large cell carcinoma) were analyzed by SNP6.0 array. Changes in proliferation after panobinostat (LBH-589, PS) and erlotinib treatment were quantified by WST-1 assay and apoptosis by Annexin V/7-AAD flow cytometry. Abundance of target proteins and histone marks (acH3, H3K4me1/2/3) was determined by immunoblotting. RESULTS: As expected, the EGFR wt cell lines A549 and NCI-H460 were quite insensitive to the growth-inhibitory effect of erlotinib (IC50 70-100 µM), compared to HCC827 (IC50<0.02 µM). All three cell lines were sensitive to PS treatment (IC50: HCC827 10 nM, A549 20 nM and NCI-H460 35 nM). The combination of both drugs further reduced proliferation in HCC827 and in A549, but not in NCI-H460. PS alone induced differentiation and expression of p21WAF1/CIP1 and p53 and decreased CHK1 in all three cell lines, with almost no further effect when combined with erlotinib. In contrast, combination treatment additively decreased pEGFR, pERK and pAKT in A549. Both drugs synergistically induced acH3 in the adenocarcinoma lines. Surprisingly, we also observed induction of H3K4 methylation marks after erlotinib treatment in HCC827 and in A549 that was further enhanced by combination with PS. CONCLUSION: PS sensitized lung adenocarcinoma cells to the antiproliferative effects of erlotinib. In these cell lines, the drug combination also had a robust, not previously described effect on histone H3 acetylation and H3K4 methylation.


Subject(s)
Carcinoma, Non-Small-Cell Lung/genetics , Histone Deacetylase Inhibitors/pharmacology , Hydroxamic Acids/pharmacology , Indoles/pharmacology , Lung Neoplasms/genetics , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Blotting, Western , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Synergism , ErbB Receptors/genetics , Erlotinib Hydrochloride/pharmacology , Genes, erbB-1 , Humans , Mutation , Oligonucleotide Array Sequence Analysis , Panobinostat
18.
J Cancer Res Clin Oncol ; 141(12): 2171-80, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26008188

ABSTRACT

PURPOSE: The retinoic acid signaling pathway, crucial for differentiation, is silenced by epigenetic mechanisms in many cancers. Epigenetically active, chromatin-modifying agents offer a novel treatment approach, by reactivating aberrantly silenced genes in tumor cells and by sensitizing them to subsequent treatments. We hypothesized that the treatment of non-small cell lung cancer (NSCLC) cells with a histone deacetylase (HDAC) inhibitor may prime them to the antiproliferative and differentiating activity of all-trans retinoic acid. METHODS: The NSCLC cell lines A549, NCI-H460 and HCC827 were treated with ATRA (2 µM) and the pan-HDAC inhibitor panobinostat (LBH589; 10-35 nM). RESULTS: While treatment with ATRA alone showed only very modest effects, panobinostat reduced cellular proliferation by at least 50 %. Notably, the combination of panobinostat and ATRA had additive and synergistic effects, respectively, on growth inhibition and differentiation, with almost no cytotoxicity. Effects were strongest in A549, followed by the EGFR-mutant HCC827, and least pronounced in NCI-H460. Global histone H3 acetylation was strongly induced by panobinostat; interestingly, ATRA alone had also an effect on histone acetylation, which was synergistically enhanced when the HDAC inhibitor was added. The combination of the two drugs additively decreased expression of phospho-ERK and phospho-AKT, whereas p53 and p21(CIP1/WAF1) proteins were both induced. CONCLUSION: Panobinostat sensitized, to varying degrees, all three cell lines to the antiproliferative and differentiating effects of ATRA, with synergistic histone H3 acetylation. Combination therapy with an epigenetic drug and ATRA may offer an alternative to aggressive chemotherapy even in primary ATRA-insensitive tumors, such as adenocarcinomas of the lung.


Subject(s)
Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Epigenesis, Genetic/drug effects , Histones/genetics , Tretinoin/pharmacology , Acetylation , Adenocarcinoma/drug therapy , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Biomarkers, Tumor/metabolism , Blotting, Western , Carcinoma, Large Cell/drug therapy , Carcinoma, Large Cell/genetics , Carcinoma, Large Cell/pathology , Carcinoma, Non-Small-Cell Lung/drug therapy , Histones/metabolism , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Signal Transduction/drug effects , Tumor Cells, Cultured
19.
PLoS One ; 8(10): e75258, 2013.
Article in English | MEDLINE | ID: mdl-24116031

ABSTRACT

All-trans retinoic acid (ATRA) has only limited single agent activity in AML without the PML-RARα fusion (non-M3 AML). In search of a sensitizing strategy to overcome this relative ATRA resistance, we investigated the potency of the HDAC class-I selective inhibitor entinostat in AML cell lines Kasumi-1 and HL-60 and primary AML blasts. Entinostat alone induced robust differentiation of both cell lines, which was enhanced by the combination with ATRA. This "priming" effect on ATRA-induced differentiation was at least equivalent to that achieved with the DNA hypomethylating agent decitabine, and could overall be recapitulated in primary AML blasts treated ex vivo. Moreover, entinostat treatment established the activating chromatin marks acH3, acH3K9, acH4 and H3K4me3 at the promoter of the RARß2 gene, an essential mediator of retinoic acid (RA) signaling in different solid tumor models. Similarly, RARß2 promoter hypermethylation (which in primary blasts from 90 AML/MDS patients was surprisingly infrequent) could be partially reversed by decitabine in the two cell lines. Re-induction of the epigenetically silenced RARß2 gene was achieved only when entinostat or decitabine were given prior to ATRA treatment. Thus in this model, reactivation of RARß2 was not necessarily required for the differentiation effect, and pharmacological RARß2 promoter demethylation may be a bystander phenomenon rather than an essential prerequisite for the cellular effects of decitabine when combined with ATRA. In conclusion, as a "priming" agent for non-M3 AML blasts to the differentiation-inducing effects of ATRA, entinostat is at least as active as decitabine, and both act in part independently from RARß2. Further investigation of this treatment combination in non-M3 AML patients is therefore warranted, independently of RARß2 gene silencing by DNA methylation.


Subject(s)
Antineoplastic Agents/pharmacology , Benzamides/pharmacology , Cell Differentiation/drug effects , Epigenesis, Genetic/drug effects , Leukemia, Myeloid, Acute/drug therapy , Pyridines/pharmacology , Tretinoin/pharmacology , Adult , Aged , Antineoplastic Agents/therapeutic use , Benzamides/therapeutic use , Cell Differentiation/genetics , Cell Line , DNA Methylation/drug effects , Drug Interactions , Female , Humans , Leukemia, Myeloid, Acute/genetics , Male , Middle Aged , Promoter Regions, Genetic/drug effects , Pyridines/therapeutic use , Tretinoin/therapeutic use
20.
PLoS One ; 6(12): e29311, 2011.
Article in English | MEDLINE | ID: mdl-22216243

ABSTRACT

BACKGROUND: We have previously demonstrated that the Y-specific ampliconic fertility genes DAZ (deleted in azoospermia) and CDY (chromodomain protein Y) varied with respect to copy number and position among chimpanzees (Pan troglodytes). In comparison, seven Y-chromosomal lineages of the bonobo (Pan paniscus), the chimpanzee's closest living relative, showed no variation. We extend our earlier comparative investigation to include an analysis of the intraspecific variation of these genes in gorillas (Gorilla gorilla) and orangutans (Pongo pygmaeus), and examine the resulting patterns in the light of the species' markedly different social and mating behaviors. METHODOLOGY/PRINCIPAL FINDINGS: Fluorescence in situ hybridization analysis (FISH) of DAZ and CDY in 12 Y-chromosomal lineages of western lowland gorilla (G. gorilla gorilla) and a single lineage of the eastern lowland gorilla (G. beringei graueri) showed no variation among lineages. Similar findings were noted for the 10 Y-chromosomal lineages examined in the Bornean orangutan (Pongo pygmaeus), and 11 Y-chromosomal lineages of the Sumatran orangutan (P. abelii). We validated the contrasting DAZ and CDY patterns using quantitative real-time polymerase chain reaction (qPCR) in chimpanzee and bonobo. CONCLUSION/SIGNIFICANCE: High intraspecific variation in copy number and position of the DAZ and CDY genes is seen only in the chimpanzee. We hypothesize that this is best explained by sperm competition that results in the variant DAZ and CDY haplotypes detected in this species. In contrast, bonobos, gorillas and orangutans-species that are not subject to sperm competition-showed no intraspecific variation in DAZ and CDY suggesting that monoandry in gorillas, and preferential female mate choice in bonobos and orangutans, probably permitted the fixation of a single Y variant in each taxon. These data support the notion that the evolutionary history of a primate Y chromosome is not simply encrypted in its DNA sequences, but is also shaped by the social and behavioral circumstances under which the specific species has evolved.


Subject(s)
Hominidae/genetics , Pan troglodytes/genetics , Y Chromosome , Animals , In Situ Hybridization, Fluorescence , Pan troglodytes/physiology , Real-Time Polymerase Chain Reaction , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...