Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Biomed Eng ; 54(6 Pt 1): 983-92, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17554818

ABSTRACT

A microsystem based microimplant with an optically powered single-channel stimulator was designed and developed as test system for an epi-retinal vision implant. Biostability of the hybrid assembly and the encapsulation materials were evaluated in pilot experiments in chronic implantations in a cat animal model. The implant was fabricated on a flexible polyimide substrate with integrated platinum electrode, interconnection lines, and contact pads for hybrid integration of electronic components. The receiver part was realized with four photodiodes connected in series. A parylene C coating was deposited on the electronic components as insulation layer. Silicone rubber was used to encapsulate the electronics in the shape of an artificial intraocular lens to allow proper implantation in the eye. Pilot experiments showed the biostability of the encapsulation approach and full electric functionality of the microimplant to generate stimulation currents over the implantation period of three months in two cats. In one cat, electrical stimulation of the retina evoked neuronal responses in the visual cortex and indicated the feasibility of the system approach for chronic use.


Subject(s)
Electric Stimulation Therapy/instrumentation , Foreign-Body Reaction/diagnosis , Lenses, Intraocular , Optics and Photonics/instrumentation , Prostheses and Implants , Retina , Vision Disorders/rehabilitation , Animals , Biocompatible Materials/adverse effects , Biocompatible Materials/chemistry , Cats , Electric Stimulation/adverse effects , Electric Stimulation/instrumentation , Electric Stimulation/methods , Electric Stimulation Therapy/adverse effects , Electric Stimulation Therapy/methods , Electrodes, Implanted , Equipment Failure Analysis , Feasibility Studies , Foreign-Body Reaction/etiology , Microelectrodes , Prosthesis Design
2.
Graefes Arch Clin Exp Ophthalmol ; 241(8): 685-93, 2003 Aug.
Article in English | MEDLINE | ID: mdl-12898282

ABSTRACT

BACKGROUND: A retina implant for restoring basic visual perception in patients who are blind due to photoreceptor loss should not only evoke focal phosphenes at high resolution, but should also generate cortical representations of form and motion. We are currently exploring these potential capabilities in anaesthetised cats. METHODS: Fibre electrodes were inserted through a small scleral incision onto the retinal surface for stimulation. For the recording of cortical population activities we placed up to 16 fibre electrodes in areas 17 and/or 18. Retinal and cortical electrodes were adjusted to corresponding sites, i.e., overlapping receptive fields. Electrical stimuli were charge-balanced impulses (200 micros, 10-100 microA). Basic form stimuli were generated by the selective and synchronous activation of some of the seven retinal stimulation electrodes. Movement stimuli were generated by spatio-temporal shifting of form stimuli. From multiple microelectrode recordings we computed stimulus-related spatio-temporal cortical activation profiles. We used these profiles to estimate the relations between stimulation distance and spatial resolution (form) and between stimulus velocity and spatio-temporal resolution (movement). Influences by the retino-cortical pathway were assessed by comparing cortical activations evoked by true form or motion stimuli with synthetic responses composed by superpositioning of responses to appropriate subsets of form and motion stimuli. In addition, we compared cortical responses to form and motion stimuli by a receptive-field-based backprojection of cortical activities. RESULTS: We confirmed our previous finding that electrical retina stimulation may yield a spatial resolution of 1-5 degrees visual angle and a temporal resolution of about 20 ms. We found that the spatio-temporal cortical activation profiles are commonly related to retinal form and motion stimuli. Cortical activity analyses showed that for two-point form stimuli the neuronal interaction depends on the stimulation electrodes' distance and that local cortical group activities can exhibit some tuning to the directions or the velocities of moving electrical bars'. Projections of cortical activations to visual space were consistent with electrical form and motion stimulation of the retina. CONCLUSIONS: Our data indicate that retinal stimulation with electrical form and motion stimuli can lead to spatio-temporally related cortical activations. However, the selective activation of single cortical neurones with specific visual tuning properties by electrical retina stimulation and the potential adaptation of the visual system to long-term stimulation with retina implants should be addressed in future work.


Subject(s)
Form Perception/physiology , Motion Perception/physiology , Retina/transplantation , Visual Cortex/physiology , Visual Cortex/surgery , Animals , Cats , Electric Stimulation , Electrophysiology , Retina/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...