Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Zool ; 9(1): 3, 2024 Feb 04.
Article in English | MEDLINE | ID: mdl-38311766

ABSTRACT

Sister to the Chiroptera crown-clade, the 50 million year old Vielasia sigei is suggested to have used laryngeal echolocation based on morphometric analyses. We discuss how Vielasia's discovery influences our understanding of the evolution of echolocation in bats and the insights fossils provide to the lives of extinct species.

2.
J Exp Biol ; 226(19)2023 10 01.
Article in English | MEDLINE | ID: mdl-37827114

ABSTRACT

Animals face unpredictable challenges that require rapid, facultative physiological reactions to support survival but may compromise reproduction. Bats have a long-standing reputation for being highly sensitive to stressors, with sensitivity and resilience varying both within and among species, yet little is known about how stress affects the signaling that regulates reproductive physiology. Here, we provide the first description of the molecular response of the hypothalamic-pituitary-gonadal (HPG) axis of male big brown bats (Eptesicus fuscus) in response to short-term stress using a standardized restraint manipulation. This acute stressor was sufficient to upregulate plasma corticosterone and resulted in a rapid decrease in circulating testosterone. While we did not find differences in the mRNA expression of key steroidogenic enzymes (StAR, aromatase, 5-alpha reductase), seminiferous tubule diameter was reduced in stressed bats coupled with a 5-fold increase in glucocorticoid receptor (GR) mRNA expression in the testes. These changes, in part, may be mediated by RFamide-related peptide (RFRP) because fewer immunoreactive cell bodies were detected in the brains of stressed bats compared with controls - suggesting a possible increase in secretion - and increased RFRP expression locally in the gonads. The rapid sensitivity of the bat testes to stress may be connected to deleterious impacts on tissue health and function as supported by significant transcriptional upregulation of key pro-apoptotic signaling molecules (Bax, cytochrome c). Experiments like this broadly contribute to our understanding of the stronger ecological predictions regarding physiological responses of bats within the context of stress, which may impact decisions surrounding animal handling and conservation approaches.


Subject(s)
Chiroptera , Animals , Male , Chiroptera/physiology , Neuroendocrinology , Reproduction/physiology , Gonads , RNA, Messenger
3.
Proc Biol Sci ; 289(1980): 20220635, 2022 08 10.
Article in English | MEDLINE | ID: mdl-35946154

ABSTRACT

Comparative analyses of bats indicate that hibernation is associated with increased longevity among species. However, it is not yet known if hibernation affects biological ageing of individuals. Here, we use DNA methylation (DNAm) as an epigenetic biomarker of ageing to determine the effect of hibernation on the big brown bat, Eptesicus fuscus. First, we compare epigenetic age, as predicted by a multi-species epigenetic clock, between hibernating and non-hibernating animals and find that hibernation is associated with epigenetic age. Second, we identify genomic sites that exhibit hibernation-associated change in DNAm, independent of age, by comparing samples taken from the same individual in hibernating and active seasons. This paired comparison identified over 3000 differentially methylated positions (DMPs) in the genome. Genome-wide association comparisons to tissue-specific functional elements reveals that DMPs with elevated DNAm during winter occur at sites enriched for quiescent chromatin states, whereas DMPs with reduced DNAm during winter occur at sites enriched for transcription enhancers. Furthermore, genes nearest DMPs are involved in regulation of metabolic processes and innate immunity. Finally, significant overlap exists between genes nearest hibernation DMPs and genes nearest previously identified longevity DMPs. Taken together, these results are consistent with hibernation influencing ageing and longevity in bats.


Subject(s)
Aging , Chiroptera , Hibernation , Aging/genetics , Animals , Chiroptera/genetics , Epigenesis, Genetic , Genome-Wide Association Study
4.
J Comp Neurol ; 530(9): 1459-1469, 2022 06.
Article in English | MEDLINE | ID: mdl-34957555

ABSTRACT

Gonadotropin-inhibitory hormone (GnIH, also known RFRP-3 in mammals) is an important regulator of the hypothalamic-pituitary-gonadal axis and downstream reproductive physiology. Substantial species differences exist in the localization of cell bodies producing RFRP-3 and patterns of fiber immunoreactivity in the brain, raising the question of functional differences. Many temperate bat species exhibit unusual annual reproductive patterns. Male bats upregulate spermatogenesis in late spring which is asynchronous with periods of mating in the fall, while females have the physiological capacity to delay their reproductive investment over winter via sperm storage or delayed ovulation/fertilization. Neuroendocrine mechanisms regulating reproductive timing in male and female bats are not well-studied. We provide the first description of RFRP-precursor peptide of GnIH -expression and localization in the brain of any bat using a widespread temperate species (Eptesicus fuscus, big brown bat) as a model. RFRP mRNA expression was detected in the hypothalamus, testes, and ovaries of big brown bats. Cellular RFRP-immunoreactivity was observed within the periventricular nuclei, dorsomedial nucleus of the hypothalamus, arcuate nucleus (Arc), and median eminence (ME). As in other vertebrates, RFRP fiber immunoreactivity was widespread, with the greatest density observed in the hypothalamus, preoptic area, Arc, ME, midbrain, and thalamic nuclei. Putative interactions between RFRP-ir fibers and gonadotropin-releasing hormone (GnRH) cell bodies were observed in 16% of GnRH-immunoreactive cells, suggesting direct regulation of GnRH via RFRP signaling. This characterization of RFRP distribution contributes to a deeper understanding of bat neuroendocrinology, which serves as foundation for manipulative approaches examining changes in reproductive neuropeptide signaling in response to environmental and physiological challenges within, and among, bat species.


Subject(s)
Chiroptera , Neuropeptides , Animals , Arcuate Nucleus of Hypothalamus/metabolism , Chiroptera/metabolism , Female , Gonadotropin-Releasing Hormone/analysis , Gonadotropins/analysis , Gonadotropins/metabolism , Male , Neuropeptides/metabolism
5.
Physiol Biochem Zool ; 95(1): 22-34, 2022.
Article in English | MEDLINE | ID: mdl-34843427

ABSTRACT

AbstractBats (order Chiroptera) are the second largest group of mammals, diverging ~52.5 million years ago. Many species exhibit an unusual reproductive cycle and extreme longevity without reproductive senescence, yet steroid profiles exist for few bats. Big brown bats (Eptesicus fuscus) are temperate insectivores found throughout North America. They mate promiscuously in fall, store sperm during winter hibernation, and have delayed ovulation and fertilization in spring. Here, we report the first urinary steroid profile in bats by quantifying 17ß-estradiol (E2) in captive male and female E. fuscus across their reproductive cycle. Male bats had higher urinary E2 levels than females, and adults had higher levels than yearlings following creatinine adjustment for hydration. In nonpregnant females, several seasonal differences in creatinine-adjusted and unadjusted urinary E2 levels were observed. Urinary E2 was higher in males than females in winter for both conditions and in autumn for creatinine-adjusted levels. We quantified progesterone (P4) in a subset of females. In nonpregnant females, urinary P4 was constant across seasons except for unadjusted levels, which were highest in the summer. In pregnant females, urinary E2 and P4 levels peaked beginning ~20 d before parturition, with both steroids returning to baseline in the following weeks. Knowing how urinary steroid levels fluctuate with age and sex and across the annual season is key to understanding reproductive cycling in bats. Our research furthers the potential for bats as a model for medical reproductive research. Moreover, it complements previous studies on the potential role of steroids in primer pheromonal effects in bats.


Subject(s)
Chiroptera , Hibernation , Animals , Female , Male , Pheromones , Reproduction , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...