Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Occup Environ Hyg ; 13(9): 675-89, 2016 09.
Article in English | MEDLINE | ID: mdl-27028086

ABSTRACT

In this study, equilibria, breakthrough curves, and breakthrough times were predicted for three binary mixtures of four volatile organic compounds (VOCs) using a model based on partial differential equations of dynamic adsorption coupling a mass balance, a simple Linear Driving Force (LDF) hypothesis to describe the kinetics, and the well-known Extended-Langmuir (EL) equilibrium model. The model aims to predict with a limited complexity, the BTCs of respirator cartridges exposed to binary vapor mixtures from equilibria and kinetics data obtained from single component. In the model, multicomponent mass transfer was simplified to use only single dynamic adsorption data. The EL expression used in this study predicted equilibria with relatively good accuracy for acetone/ethanol and ethanol/cyclohexane mixtures, but the prediction of cyclohexane uptake when mixed with heptane is less satisfactory. The BTCs given by the model were compared to experimental BTCs to determine the accuracy of the model and the impact of the approximation on mass transfer coefficients. From BTCs, breakthrough times at 10% of the exposure concentration t10% were determined. All t10% were predicted within 20% of the experimental values, and 63% of the breakthrough times were predicted within a 10% error. This study demonstrated that a simple mass balance combined with kinetic approximations is sufficient to predict lifetime for respirator cartridges exposed to VOC mixtures. It also showed that a commonly adopted approach to describe multicomponent adsorption based on volatility of VOC rather than adsorption equilibrium greatly overestimated the breakthrough times.


Subject(s)
Models, Theoretical , Respiratory Protective Devices/standards , Volatile Organic Compounds/chemistry , Acetone/chemistry , Adsorption , Air Pollutants, Occupational/chemistry , Cyclohexanes/chemistry , Equipment Failure , Ethanol/chemistry , Heptanes/chemistry , Volatilization
2.
Chem Res Toxicol ; 24(12): 2061-70, 2011 Dec 19.
Article in English | MEDLINE | ID: mdl-21732636

ABSTRACT

The toxicity of carbon dioxide has been established for close to a century. A number of animal experiments have explored both acute and long-term toxicity with respect to the lungs, the cardiovascular system, and the bladder, showing inflammatory and possible carcinogenic effects. Carbon dioxide also induces multiple fetal malformations and probably reduces fertility in animals. The aim of the review is to recapitulate the physiological and metabolic mechanisms resulting from CO(2) inhalation. As smokers are exposed to a high level of carbon dioxide (13%) that is about 350 times the level in normal air, we propose the hypothesis that carbon dioxide plays a major role in the long term toxicity of tobacco smoke.


Subject(s)
Carbon Dioxide/toxicity , Acidosis, Respiratory/metabolism , Acidosis, Respiratory/pathology , Animals , Bicarbonates/chemistry , Carcinogens/toxicity , Cardiovascular System/drug effects , Cardiovascular System/metabolism , Central Nervous System/drug effects , Central Nervous System/metabolism , Humans , Hypercapnia/metabolism , Hypercapnia/pathology , Lung/drug effects , Lung/metabolism , Reproduction/drug effects
3.
J Occup Environ Hyg ; 8(5): 279-88, 2011 May.
Article in English | MEDLINE | ID: mdl-21462069

ABSTRACT

The linear driving force (LDF) model is applied to predict the service life of activated carbon cartridges. It is compared with the currently used Wheeler-Jonas equation, which results from a model of chemical reaction kinetics. The LDF model is based on a mass transfer model of adsorbate into the particle. The two models are studied in constant-pattern conditions. The properties of the two models are first clarified and then compared. It is shown that the Wheeler-Jonas equation leads to symmetrical breakthrough curves, whereas the constant-pattern LDF equation results in asymmetrical curves. Thus, the curvature of the isotherm has no influence on the shape of the Wheeler-Jonas curve. For the LDF breakthrough curve, it is shown that the asymmetry increases with the curvature of the isotherm. Wheeler-Jonas can be used with a Dubinin-Raduskevitch isotherm, whereas the LDF model analytical solution is valid for a Langmuir isotherm only. The LDF model can be used with the DR isotherm, but a numerical solution is required. At very low concentrations where the isotherm is linear, the constant pattern no longer exists and both models fail. The Dubinin-Raduskevitch isotherm must be fitted with a Langmuir isotherm to use the analytical solution of the LDF model.


Subject(s)
Charcoal/chemistry , Materials Testing , Models, Chemical , Respiratory Protective Devices/standards , Adsorption , Kinetics , Predictive Value of Tests , Time Factors
4.
Inhal Toxicol ; 22(7): 543-51, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20387988

ABSTRACT

Tobacco smoking is responsible for a vast array of diseases, particularly chronic bronchitis and lung cancer. It is still unclear which constituent(s) of the smoke is responsible for its toxicity. The authors decided to focus on carbon dioxide, since its level of concentration in mainstream cigarette smoke is about 200 times higher than in the atmosphere. The authors previously demonstrated that inhalation of carbon dioxide concentrations above 5% has a deleterious effect on lungs. In this study, the authors assessed the inflammatory potential of carbon dioxide contained in cigarette smoke. Mice were exposed to cigarette smoke containing a high or reduced CO(2) level by filtration through a potassium hydroxyde solution. The inflammatory response was evaluated by histological analysis, protein phosphatase 2 A (PP2A) and nuclear factor (NF)-kappaB activation, and proinflammatory cytokine secretion measurements. The data show that the toxicity of cigarette smoke may be largely due to its high level of CO(2). Pulmonary injuries consequent to tobacco smoke inhalation observed by histology were greatly diminished when CO(2) was removed. Cigarette smoke exposure causes an inflammatory response characterized by PP2A and NF-kappaB activation followed by proinflammatory cytokine secretion. This inflammatory response was reduced when the cigarette smoke was filtered through a potassium hydroxide column, and reestablished when CO(2) was injected downstream from the filtration column.Given that there is an extensive literature linking a chronic inflammatory response to the major smoking-related diseases, these data suggest that carbon dioxide may play a key role in the causation of these diseases by tobacco smoking.


Subject(s)
Carbon Dioxide/toxicity , Inflammation Mediators/toxicity , Inhalation Exposure/adverse effects , Lung/pathology , Smoke/adverse effects , Smoking/adverse effects , Animals , Carbon Dioxide/administration & dosage , Inflammation Mediators/administration & dosage , Lung/drug effects , Lung/metabolism , Male , Mice , Mice, Inbred BALB C
5.
Environ Sci Technol ; 38(18): 4865-77, 2004 Sep 15.
Article in English | MEDLINE | ID: mdl-15487798

ABSTRACT

Capture and recovery of hazardous air pollutants (HAPs) and volatile organic compounds (VOCs) from gas streams using physical adsorption onto activated carbon fiber cloth (ACFC) is demonstrated on the bench-scale. This system is regenerated electrothermally, by passing an electric current directly through the ACFC. The adsorbate desorbs from the ACFC, rapidly condenses on the inside walls of the adsorber, and then drains from the adsorber as a pure liquid. Rapid electrothermal desorption exhibits such unique characteristics as extremely low purge gas flow rate, rapid rate of ACFC heating, rapid mass transfer kinetics inherent to ACFC, and in-vessel condensation. An existing system was scaled up 500%, and the new system was modeled using material and energy balances. Adsorption isotherms using methyl ethyl ketone (MEK) and ACFC were obtained while electricity passed through the ACFC and at temperatures above MEK's boiling point. These isotherms agreed within 7% to Dubinin-Radushkevich modeled isotherms that were extrapolated from independently determined gravimetric measurements obtained at lower temperatures. Energy and material balances for the electrothermal desorption of organic vapors and ACFC agree to within 7% of experimentally measured values. These results allow the modeling of electrothermal desorption of organic vapors from gas streams with in-vessel condensation to optimize operating conditions of the system during regeneration of the adsorbent.


Subject(s)
Carbon/chemistry , Environmental Monitoring/methods , Adsorption , Butanones/analysis , Butanones/chemistry , Carbon Fiber , Charcoal/chemistry , Electricity , Environmental Monitoring/instrumentation , Hot Temperature , Textiles
SELECTION OF CITATIONS
SEARCH DETAIL
...