Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
PLoS Genet ; 20(4): e1011232, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38669270

ABSTRACT

Animals often grow and develop in unpredictable environments where factors like food availability, temperature, and oxygen levels can fluctuate dramatically. To ensure proper sexual maturation into adulthood, juvenile animals need to adapt their growth and developmental rates to these fluctuating environmental conditions. Failure to do so can result in impaired maturation and incorrect body size. Here we describe a mechanism by which Drosophila larvae adapt their development in low oxygen (hypoxia). During normal development, larvae grow and increase in mass until they reach critical weight (CW), after which point a neuroendocrine circuit triggers the production of the steroid hormone ecdysone from the prothoracic gland (PG), which promotes maturation to the pupal stage. However, when raised in hypoxia (5% oxygen), larvae slow their growth and delay their maturation to the pupal stage. We find that, although hypoxia delays the attainment of CW, the maturation delay occurs mainly because of hypoxia acting late in development to suppress ecdysone production. This suppression operates through a distinct mechanism from nutrient deprivation, occurs independently of HIF-1 alpha and does not involve dilp8 or modulation of Ptth, the main neuropeptide that initiates ecdysone production in the PG. Instead, we find that hypoxia lowers the expression of the EGF ligand, spitz, and that the delay in maturation occurs due to reduced EGFR/ERK signaling in the PG. Our study sheds light on how animals can adjust their development rate in response to changing oxygen levels in their environment. Given that hypoxia is a feature of both normal physiology and many diseases, our findings have important implications for understanding how low oxygen levels may impact animal development in both normal and pathological situations.


Subject(s)
Drosophila Proteins , Drosophila melanogaster , Ecdysone , Epidermal Growth Factor , Larva , Signal Transduction , Animals , Ecdysone/metabolism , Larva/growth & development , Larva/genetics , Larva/metabolism , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Epidermal Growth Factor/metabolism , Epidermal Growth Factor/genetics , Drosophila melanogaster/growth & development , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Hypoxia/metabolism , Gene Expression Regulation, Developmental , ErbB Receptors/metabolism , ErbB Receptors/genetics , Oxygen/metabolism , Pupa/growth & development , Pupa/metabolism , Pupa/genetics
2.
Biol Open ; 12(11)2023 11 15.
Article in English | MEDLINE | ID: mdl-37850733

ABSTRACT

Macrophages play critical roles in regulating and maintaining tissue and whole-body metabolism in normal and disease states. While the cell-cell signaling pathways that underlie these functions are becoming clear, less is known about how alterations in macrophage metabolism influence their roles as regulators of systemic physiology. Here, we investigate this by examining Drosophila macrophage-like cells called hemocytes. We used knockdown of TFAM, a mitochondrial genome transcription factor, to reduce mitochondrial OxPhos activity specifically in larval hemocytes. We find that this reduction in hemocyte OxPhos leads to a decrease in larval growth and body size. These effects are associated with a suppression of systemic insulin, the main endocrine stimulator of body growth. We also find that TFAM knockdown leads to decreased hemocyte JNK signaling and decreased expression of the TNF alpha homolog, Eiger in hemocytes. Furthermore, we show that genetic knockdown of hemocyte JNK signaling or Eiger expression mimics the effects of TFAM knockdown and leads to a non-autonomous suppression of body size without altering hemocyte numbers. Our data suggest that modulation of hemocyte mitochondrial metabolism can determine their non-autonomous effects on organismal growth by altering cytokine and systemic insulin signaling. Given that nutrient availability can control mitochondrial metabolism, our findings may explain how macrophages function as nutrient-responsive regulators of tissue and whole-body physiology and homeostasis.


Subject(s)
Drosophila Proteins , Drosophila , Animals , Drosophila/genetics , Drosophila/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Cytokines , Insulin/metabolism , Signal Transduction , Macrophages/metabolism
3.
G3 (Bethesda) ; 12(12)2022 12 01.
Article in English | MEDLINE | ID: mdl-36200850

ABSTRACT

When exposed to low oxygen or hypoxia, animals must alter their metabolism and physiology to ensure proper cell-, tissue-, and whole-body level adaptations to their hypoxic environment. These alterations often involve changes in gene expression. While extensive work has emphasized the importance of the HIF-1 alpha transcription factor on controlling hypoxia gene expression, less is known about other transcriptional mechanisms. We previously identified the transcription factor FOXO as a regulator of hypoxia tolerance in Drosophila larvae and adults. Here, we use an RNA-sequencing approach to identify FOXO-dependent changes in gene expression that are associated with these tolerance effects. We found that hypoxia altered the expression of over 2,000 genes and that ∼40% of these gene expression changes required FOXO. We discovered that hypoxia exposure led to a FOXO-dependent increase in genes involved in cell signaling, such as kinases, GTPase regulators, and regulators of the Hippo/Yorkie pathway. Among these, we identified homeodomain-interacting protein kinase as being required for hypoxia survival. We also found that hypoxia suppresses the expression of genes involved in ribosome synthesis and egg production, and we showed that hypoxia suppresses tRNA synthesis and mRNA translation and reduces female fecundity. Among the downregulated genes, we discovered that FOXO was required for the suppression of many ribosomal protein genes and genes involved in oxidative phosphorylation, pointing to a role for FOXO in limiting energetically costly processes such as protein synthesis and mitochondrial activity upon hypoxic stress. This work uncovers a widespread role for FOXO in mediating hypoxia changes in gene expression.


Subject(s)
Drosophila Proteins , Drosophila , Animals , Female , Drosophila/genetics , Drosophila/metabolism , Drosophila Proteins/metabolism , Oxygen , Transcription Factors/genetics , Hypoxia/genetics , Gene Expression Profiling , Homeodomain Proteins/genetics , Gene Expression , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism
4.
G3 (Bethesda) ; 12(11)2022 11 04.
Article in English | MEDLINE | ID: mdl-35781508

ABSTRACT

When infected by intestinal pathogenic bacteria, animals initiate both local and systemic defence responses. These responses are required to reduce pathogen burden and also to alter host physiology and behavior to promote infection tolerance, and they are often mediated through alterations in host gene expression. Here, we have used transcriptome profiling to examine gene expression changes induced by enteric infection with the Gram-negative bacteria Pseudomonas entomophila in adult female Drosophila. We find that infection induces a strong upregulation of metabolic gene expression, including gut and fat body-enriched genes involved in lipid transport, lipolysis, and beta-oxidation, as well as glucose and amino acid metabolism genes. Furthermore, we find that the classic innate immune deficiency (Imd)/Relish/NF-KappaB pathway is not required for, and in some cases limits, these infection-mediated increases in metabolic gene expression. We also see that enteric infection with Pseudomonas entomophila downregulates the expression of many transcription factors and cell-cell signaling molecules, particularly those previously shown to be involved in gut-to-brain and neuronal signaling. Moreover, as with the metabolic genes, these changes occurred largely independent of the Imd pathway. Together, our study identifies many metabolic, signaling, and transcription factor gene expression changes that may contribute to organismal physiological and behavioral responses to enteric pathogen infection.


Subject(s)
Bacterial Infections , Drosophila Proteins , Animals , Female , Drosophila/genetics , Drosophila/metabolism , Drosophila Proteins/metabolism , Signal Transduction , Gene Expression , Drosophila melanogaster/metabolism , Immunity, Innate/genetics
5.
Cell Rep ; 39(6): 110802, 2022 05 10.
Article in English | MEDLINE | ID: mdl-35545043

ABSTRACT

Animals must adapt their growth to fluctuations in nutrient availability to ensure proper development. These adaptations often rely on specific nutrient-sensing tissues that control whole-body physiology through inter-organ communication. While the signaling mechanisms that underlie this communication are well studied, the contributions of metabolic alterations in nutrient-sensing tissues are less clear. Here, we show how the reprogramming of adipose mitochondria controls whole-body growth in Drosophila larvae. We find that dietary nutrients alter fat-body mitochondrial morphology to lower their bioenergetic activity, leading to rewiring of fat-body glucose metabolism. Strikingly, we find that genetic reduction of mitochondrial bioenergetics just in the fat body is sufficient to accelerate body growth and development. These growth effects are caused by inhibition of the fat-derived secreted peptides ImpL2 and tumor necrosis factor alpha (TNF-α)/Eiger, leading to enhanced systemic insulin signaling. Our work reveals how reprogramming of mitochondrial metabolism in one nutrient-sensing tissue can couple nutrient availability to whole-body growth.


Subject(s)
Drosophila Proteins , Insulin , Adipose Tissue/metabolism , Animals , Cytokines/metabolism , Drosophila/metabolism , Drosophila Proteins/metabolism , Energy Metabolism , Insulin/metabolism , Insulin-Like Growth Factor Binding Proteins/metabolism , Mitochondria/metabolism
6.
Dis Model Mech ; 15(5)2022 05 01.
Article in English | MEDLINE | ID: mdl-35363274

ABSTRACT

When infected by enteric pathogenic bacteria, animals need to initiate local and whole-body defence strategies. Although most attention has focused on the role of innate immune anti-bacterial responses, less is known about how changes in host metabolism contribute to host defence. Using Drosophila as a model system, we identify induction of intestinal target-of-rapamycin (TOR) kinase signalling as a key adaptive metabolic response to enteric infection. We find that enteric infection induces both local and systemic induction of TOR independently of the Immune deficiency (IMD) innate immune pathway, and we see that TOR functions together with IMD signalling to promote infection survival. These protective effects of TOR signalling are associated with remodelling of host lipid metabolism. Thus, we see that TOR is required to limit excessive infection-mediated wasting of host lipid stores by promoting an increase in the levels of gut- and fat body-expressed lipid synthesis genes. Our data support a model in which induction of TOR represents a host tolerance response to counteract infection-mediated lipid wasting in order to promote survival. This article has an associated First Person interview with the first author of the paper.


Subject(s)
Drosophila Proteins , Drosophila , Animals , Drosophila Proteins/metabolism , Humans , Immunity, Innate , Lipids , Sirolimus
8.
J Exp Biol ; 223(Pt 22)2020 11 23.
Article in English | MEDLINE | ID: mdl-32988998

ABSTRACT

In many animals, short-term fluctuations in environmental conditions in early life often exert long-term effects on adult physiology. In Drosophila, one ecologically relevant environmental variable is hypoxia. Drosophila larvae live on rotting, fermenting food rich in microorganisms, an environment characterized by low ambient oxygen. They have therefore evolved to tolerate hypoxia. Although the acute effects of hypoxia in larvae have been well studied, whether early-life hypoxia affects adult physiology and fitness is less clear. Here, we show that Drosophila exposed to hypoxia during their larval period subsequently show reduced starvation stress resistance and shorter lifespan as adults, with these effects being stronger in males. We find that these effects are associated with reduced whole-body insulin signaling but elevated TOR kinase activity, a manipulation known to reduce lifespan. We also identify a sexually dimorphic effect of larval hypoxia on adult nutrient storage and mobilization. Thus, we find that males, but not females, show elevated levels of lipids and glycogen. Moreover, we see that both males and females exposed to hypoxia as larvae show defective lipid mobilization upon starvation stress as adults. These data demonstrate how early-life hypoxia can exert persistent, sexually dimorphic, long-term effects on Drosophila adult physiology and lifespan.


Subject(s)
Drosophila Proteins , Starvation , Animals , Drosophila , Drosophila melanogaster , Female , Hypoxia , Longevity , Male
9.
Genetics ; 215(4): 1013-1025, 2020 08.
Article in English | MEDLINE | ID: mdl-32513813

ABSTRACT

Exposure of tissues and organs to low oxygen (hypoxia) occurs in both physiological and pathological conditions in animals. Under these conditions, organisms have to adapt their physiology to ensure proper functioning and survival. Here, we define a role for the transcription factor Forkhead Box-O (FOXO) as a mediator of hypoxia tolerance in Drosophila We find that upon hypoxia exposure, FOXO transcriptional activity is rapidly induced in both larvae and adults. Moreover, we see that foxo mutant animals show misregulated glucose metabolism in low oxygen and subsequently exhibit reduced hypoxia survival. We identify the innate immune transcription factor, NF-κB/Relish, as a key FOXO target in the control of hypoxia tolerance. We find that expression of Relish and its target genes is increased in a FOXO-dependent manner in hypoxia, and that relish mutant animals show reduced survival in hypoxia. Together, these data indicate that FOXO is a hypoxia-inducible factor that mediates tolerance to low oxygen by inducing immune-like responses.


Subject(s)
Drosophila Proteins/metabolism , Drosophila melanogaster/growth & development , Forkhead Transcription Factors/metabolism , Hypoxia/physiopathology , Immunity, Innate/genetics , NF-kappa B/metabolism , Transcription Factors/metabolism , Animals , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Female , Forkhead Transcription Factors/genetics , Gene Expression Regulation, Developmental , NF-kappa B/genetics , Signal Transduction , Transcription Factors/genetics
10.
Nat Commun ; 10(1): 1878, 2019 04 23.
Article in English | MEDLINE | ID: mdl-31015407

ABSTRACT

Animals often develop in environments where conditions such as food, oxygen and temperature fluctuate. The ability to adapt their metabolism to these fluctuations is important for normal development and viability. In most animals, low oxygen (hypoxia) is deleterious. However some animals can alter their physiology to tolerate hypoxia. Here we show that TORC1 modulation in adipose tissue is required for organismal adaptation to hypoxia in Drosophila. We find that hypoxia rapidly suppresses TORC1 signaling in Drosophila larvae via TSC-mediated inhibition of Rheb. We show that this hypoxia-mediated inhibition of TORC1 specifically in the larval fat body is essential for viability. Moreover, we find that these effects of TORC1 inhibition on hypoxia tolerance are mediated through remodeling of fat body lipid storage. These studies identify the larval adipose tissue as a key hypoxia-sensing tissue that coordinates whole-body development and survival to changes in environmental oxygen by modulating TORC1 and lipid metabolism.


Subject(s)
Acclimatization/physiology , Adipose Tissue/metabolism , Drosophila Proteins/metabolism , Drosophila/physiology , Hypoxia/metabolism , Transcription Factors/metabolism , Animals , Animals, Genetically Modified , DNA-Binding Proteins/genetics , Drosophila Proteins/genetics , Larva/growth & development , Lipid Droplets/physiology , Lipid Metabolism/physiology , Ras Homolog Enriched in Brain Protein/metabolism , Transcription Factors/genetics
11.
Dev Biol ; 439(1): 19-29, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29660312

ABSTRACT

The Ras small G-protein is a conserved regulator of cell and tissue growth during animal development. Studies in Drosophila have shown how Ras can stimulate a RAF-MEK-ERK signalling pathway to control cell growth and proliferation in response to Epidermal Growth Factor (EGF) stimulation. This work has also defined several transcription factors that can function as downstream growth effectors of the EGF/Ras/ERK pathway by stimulating mRNA transcription. Here we report on stimulation of RNA polymerase I (Pol I)-mediated ribosomal RNA (rRNA) synthesis as a growth effector of Ras/ERK signalling in Drosophila. We show that Ras/ERK signalling promotes an increase in nucleolar size in larval wing discs, which is indicative of increased ribosome synthesis. We also find that activation of Ras/ERK signalling promotes rRNA synthesis both in vivo and in cultured Drosophila S2 cells. We show that Ras signalling can regulate the expression of the Pol I transcription factor TIF-IA, and that this regulation requires dMyc. Finally, we find that TIF-IA-mediated rRNA synthesis is required for Ras/ERK signalling to drive proliferation in both larval and adult Drosophila tissues. These findings indicate that Ras signalling can promote ribosome synthesis in Drosophila, and that this is one mechanism that contributes to the growth effects of the Ras signalling pathway.


Subject(s)
Drosophila Proteins/physiology , Epidermal Growth Factor/physiology , IMP Dehydrogenase/physiology , RNA, Ribosomal/biosynthesis , Animals , Cell Proliferation , Drosophila/genetics , Drosophila/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Epidermal Growth Factor/metabolism , Gene Expression Regulation/physiology , IMP Dehydrogenase/metabolism , Larva/metabolism , RNA, Ribosomal/metabolism , RNA, Ribosomal/physiology , Ribosomes/metabolism , Signal Transduction , Transcription Factors/metabolism , Transcription, Genetic/physiology
12.
PLoS Genet ; 14(2): e1007202, 2018 02.
Article in English | MEDLINE | ID: mdl-29401457

ABSTRACT

The small G-protein Ras is a conserved regulator of cell and tissue growth. These effects of Ras are mediated largely through activation of a canonical RAF-MEK-ERK kinase cascade. An important challenge is to identify how this Ras/ERK pathway alters cellular metabolism to drive growth. Here we report on stimulation of RNA polymerase III (Pol III)-mediated tRNA synthesis as a growth effector of Ras/ERK signalling in Drosophila. We find that activation of Ras/ERK signalling promotes tRNA synthesis both in vivo and in cultured Drosophila S2 cells. We also show that Pol III function is required for Ras/ERK signalling to drive proliferation in both epithelial and stem cells in Drosophila tissues. We find that the transcription factor Myc is required but not sufficient for Ras-mediated stimulation of tRNA synthesis. Instead we show that Ras signalling promotes Pol III function and tRNA synthesis by phosphorylating, and inhibiting the nuclear localization and function of the Pol III repressor Maf1. We propose that inhibition of Maf1 and stimulation of tRNA synthesis is one way by which Ras signalling enhances protein synthesis to promote cell and tissue growth.


Subject(s)
Drosophila Proteins/physiology , Drosophila melanogaster/genetics , MAP Kinase Signaling System/physiology , RNA, Transfer/biosynthesis , Repressor Proteins/physiology , Transcription Elongation, Genetic , ras Proteins/physiology , Animals , Animals, Genetically Modified , Cell Proliferation/genetics , Cells, Cultured , Drosophila Proteins/genetics , Drosophila melanogaster/embryology , Embryo, Nonmammalian , Protein Biosynthesis/genetics , RNA Polymerase III/antagonists & inhibitors , RNA, Transfer/genetics , Repressor Proteins/genetics , Signal Transduction/physiology , Transcription Factor TFIIIB/genetics , Transcription Factor TFIIIB/physiology , Wings, Animal/embryology , Wings, Animal/metabolism
13.
Nature ; 552(7684): 182-183, 2017 12 14.
Article in English | MEDLINE | ID: mdl-29239369
14.
Biol Open ; 6(8): 1229-1234, 2017 Aug 15.
Article in English | MEDLINE | ID: mdl-28642244

ABSTRACT

Translational control of gene expression is an important regulator of growth, homeostasis and aging in Drosophila The ability to measure changes in protein synthesis in response to genetic and environmental cues is therefore important in studying these processes. Here we describe a simple and cost-effective approach to assay protein synthesis in Drosophila larval cells and tissues. The method is based on the incorporation of puromycin into nascent peptide chains. Using an ex vivo approach, we label newly synthesized peptides in larvae with puromycin and then measure levels of new protein synthesis using an anti-puromycin antibody. We show that this method can detect changes in protein synthesis in specific cells and tissues in the larvae, either by immunostaining or western blotting. We find that the assay reliably detects changes in protein synthesis induced by two known stimulators of mRNA translation - the nutrient/TORC1 kinase pathway and the transcription factor dMyc. We also use the assay to describe how protein synthesis changes through larval development and in response to two environmental stressors - hypoxia and heat shock. We propose that this puromycin-labelling assay is a simple but robust method to detect protein synthesis changes at the levels of cells, tissues or whole body in Drosophila.

15.
PLoS Genet ; 11(12): e1005683, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26710087

ABSTRACT

Almost all animals show sex differences in body size. For example, in Drosophila, females are larger than males. Although Drosophila is widely used as a model to study growth, the mechanisms underlying this male-female difference in size remain unclear. Here, we describe a novel role for the sex determination gene transformer (tra) in promoting female body growth. Normally, Tra is expressed only in females. We find that loss of Tra in female larvae decreases body size, while ectopic Tra expression in males increases body size. Although we find that Tra exerts autonomous effects on cell size, we also discovered that Tra expression in the fat body augments female body size in a non cell-autonomous manner. These effects of Tra do not require its only known targets doublesex and fruitless. Instead, Tra expression in the female fat body promotes growth by stimulating the secretion of insulin-like peptides from insulin producing cells in the brain. Our data suggest a model of sex-specific growth in which body size is regulated by a previously unrecognized branch of the sex determination pathway, and identify Tra as a novel link between sex and the conserved insulin signaling pathway.


Subject(s)
Body Size/genetics , Drosophila/genetics , Nuclear Proteins/genetics , Sex Characteristics , Animals , Brain/metabolism , DNA-Binding Proteins/genetics , Drosophila/growth & development , Drosophila Proteins/genetics , Fat Body/metabolism , Female , Insulin/metabolism , Male , Nerve Tissue Proteins/genetics , Nuclear Proteins/metabolism , Sex Determination Processes/genetics , Transcription Factors/genetics
16.
Biochim Biophys Acta ; 1849(7): 898-907, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25497380

ABSTRACT

Transfer RNAs (tRNAs) are essential for mRNA translation. They are transcribed in the nucleus by RNA polymerase III and undergo many modifications before contributing to cytoplasmic protein synthesis. In this review I highlight our understanding of how tRNA biology may be linked to the regulation of mRNA translation, growth and tumorigenesis. First, I review how oncogenes and tumour suppressor signalling pathways, such as the PI3 kinase/TORC1, Ras/ERK, Myc, p53 and Rb pathways, regulate Pol III and tRNA synthesis. In several cases, this regulation contributes to cell, tissue and body growth, and has implications for our understanding of tumorigenesis. Second, I highlight some recent work, particularly in model organisms such as yeast and Drosophila, that shows how alterations in tRNA synthesis may be not only necessary, but also sufficient to drive changes in mRNA translation and growth. These effects may arise due to both absolute increases in total tRNA levels, but also changes in the relative levels of tRNAs in the overall pool. Finally, I review some recent studies that have revealed how tRNA modifications (amino acid acylation, base modifications, subcellular shuttling, and cleavage) can be regulated by growth and stress cues to selectively influence mRNA translation. Together these studies emphasize the importance of the regulation of tRNA synthesis and modification as critical control points in protein synthesis and growth. This article is part of a Special Issue entitled: Translation and Cancer.


Subject(s)
Neoplasms/metabolism , Oncogene Proteins/metabolism , Protein Biosynthesis , RNA, Messenger/metabolism , RNA, Neoplasm/metabolism , RNA, Transfer/biosynthesis , Animals , Neoplasms/genetics , Neoplasms/pathology , Oncogene Proteins/genetics , RNA Polymerase III/genetics , RNA Polymerase III/metabolism , RNA, Messenger/genetics , RNA, Neoplasm/genetics , RNA, Transfer/genetics
17.
Biol Open ; 3(11): 1020-31, 2014 Oct 10.
Article in English | MEDLINE | ID: mdl-25305039

ABSTRACT

The larval period of the Drosophila life cycle is characterized by immense growth. In nutrient rich conditions, larvae increase in mass approximately two hundred-fold in five days. However, upon nutrient deprivation, growth is arrested. The prevailing view is that dietary amino acids drive this larval growth by activating the conserved insulin/PI3 kinase and Target of rapamycin (TOR) pathways and promoting anabolic metabolism. One key anabolic process is protein synthesis. However, few studies have attempted to measure mRNA translation during larval development or examine the signaling requirements for nutrient-dependent regulation. Our work addresses this issue. Using polysome analyses, we observed that starvation rapidly (within thirty minutes) decreased larval mRNA translation, with a maximal decrease at 6-18 hours. By analyzing individual genes, we observed that nutrient-deprivation led to a general reduction in mRNA translation, regardless of any starvation-mediated changes (increase or decrease) in total transcript levels. Although sugars and amino acids are key regulators of translation in animal cells and are the major macronutrients in the larval diet, we found that they alone were not sufficient to maintain mRNA translation in larvae. The insulin/PI3 kinase and TOR pathways are widely proposed as the main link between nutrients and mRNA translation in animal cells. However, we found that genetic activation of PI3K and TOR signaling, or regulation of two effectors - 4EBP and S6K - could not prevent the starvation-mediated translation inhibition. Similarly, we showed that the nutrient stress-activated eIF2α kinases, GCN2 and PERK, were not required for starvation-induced inhibition of translation in larvae. These findings indicate that nutrient control of mRNA translation in larvae is more complex than simply amino acid activation of insulin and TOR signaling.

18.
PLoS Genet ; 10(10): e1004750, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25356674

ABSTRACT

The conserved TOR kinase signaling network links nutrient availability to cell, tissue and body growth in animals. One important growth-regulatory target of TOR signaling is ribosome biogenesis. Studies in yeast and mammalian cell culture have described how TOR controls rRNA synthesis-a limiting step in ribosome biogenesis-via the RNA Polymerase I transcription factor TIF-IA. However, the contribution of TOR-dependent ribosome synthesis to tissue and body growth in animals is less clear. Here we show in Drosophila larvae that ribosome synthesis in muscle is required non-autonomously to maintain normal body growth and development. We find that amino acid starvation and TOR inhibition lead to reduced levels of TIF-IA, and decreased rRNA synthesis in larval muscle. When we mimic this decrease in muscle ribosome synthesis using RNAi-mediated knockdown of TIF-IA, we observe delayed larval development and reduced body growth. This reduction in growth is caused by lowered systemic insulin signaling via two endocrine responses: reduced expression of Drosophila insulin-like peptides (dILPs) from the brain and increased expression of Imp-L2-a secreted factor that binds and inhibits dILP activity-from muscle. We also observed that maintaining TIF-IA levels in muscle could partially reverse the starvation-mediated suppression of systemic insulin signaling. Finally, we show that activation of TOR specifically in muscle can increase overall body size and this effect requires TIF-IA function. These data suggest that muscle ribosome synthesis functions as a nutrient-dependent checkpoint for overall body growth: in nutrient rich conditions, TOR is required to maintain levels of TIF-IA and ribosome synthesis to promote high levels of systemic insulin, but under conditions of starvation stress, reduced muscle ribosome synthesis triggers an endocrine response that limits systemic insulin signaling to restrict growth and maintain homeostasis.


Subject(s)
Drosophila Proteins/genetics , Insulin/metabolism , Ribosomes/genetics , Transcription Factors/genetics , Transcription, Genetic , Animals , Drosophila/genetics , Drosophila/growth & development , Drosophila Proteins/biosynthesis , Gene Expression Regulation, Developmental , Insulin/genetics , Larva/genetics , Larva/growth & development , Muscles/metabolism , RNA Interference , RNA, Ribosomal/biosynthesis , Receptor Protein-Tyrosine Kinases/biosynthesis , Signal Transduction , Transcription Factors/biosynthesis
19.
F1000 Biol Rep ; 4: 12, 2012.
Article in English | MEDLINE | ID: mdl-22685490

ABSTRACT

The question of how growth and size are controlled has fascinated generations of biologists. However, the underlying mechanisms still remain unclear. The last year or so has seen a flurry of reports on the control of growth and body size in Drosophila, and a central theme to these papers is the idea of signaling between organs as a control mechanism for overall body growth and development. While this concept is obviously not new, these fly studies now open up the possibility of using a genetically tractable system to dissect in detail how organ-to-organ communication dictates body size.

20.
EMBO J ; 31(8): 1916-30, 2012 Apr 18.
Article in English | MEDLINE | ID: mdl-22367393

ABSTRACT

The nutrient/target-of-rapamycin (TOR) pathway has emerged as a key regulator of tissue and organismal growth in metazoans. The signalling components of the nutrient/TOR pathway are well defined; however, the downstream effectors are less understood. Here, we show that the control of RNA polymerase (Pol) III-dependent transcription is an essential target of TOR in Drosophila. We find that TOR activity controls Pol III in growing larvae via inhibition of the repressor Maf1 and, in part, via the transcription factor Drosophila Myc (dMyc). Moreover, we show that loss of the Pol III factor, Brf, leads to reduced tissue and organismal growth and prevents TOR-induced cellular growth. TOR activity in the larval fat body, a tissue equivalent to vertebrate fat or liver, couples nutrition to insulin release from the brain. Accordingly, we find that fat-specific loss of Brf phenocopies nutrient limitation and TOR inhibition, leading to decreased systemic insulin signalling and reduced organismal growth. Thus, stimulation of Pol III is a key downstream effector of TOR in the control of cellular and systemic growth.


Subject(s)
Drosophila/embryology , Food , Gene Expression Regulation , RNA Polymerase III/biosynthesis , TOR Serine-Threonine Kinases/metabolism , Animals , DNA-Binding Proteins/metabolism , Drosophila Proteins/metabolism , Fat Body/embryology , Models, Biological , Repressor Proteins/metabolism , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...