Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Transl Med ; 21(1): 577, 2023 08 28.
Article in English | MEDLINE | ID: mdl-37641066

ABSTRACT

BACKGROUND: With metabolic alterations of the tumor microenvironment (TME) contributing to cancer progression, metastatic spread and response to targeted therapies, non-invasive and repetitive imaging of tumor metabolism is of major importance. The purpose of this study was to investigate whether multiparametric chemical exchange saturation transfer magnetic resonance imaging (CEST-MRI) allows to detect differences in the metabolic profiles of the TME in murine breast cancer models with divergent degrees of malignancy and to assess their response to immunotherapy. METHODS: Tumor characteristics of highly malignant 4T1 and low malignant 67NR murine breast cancer models were investigated, and their changes during tumor progression and immune checkpoint inhibitor (ICI) treatment were evaluated. For simultaneous analysis of different metabolites, multiparametric CEST-MRI with calculation of asymmetric magnetization transfer ratio (MTRasym) at 1.2 to 2.0 ppm for glucose-weighted, 2.0 ppm for creatine-weighted and 3.2 to 3.6 ppm for amide proton transfer- (APT-) weighted CEST contrast was conducted. Ex vivo validation of MRI results was achieved by 1H nuclear magnetic resonance spectroscopy, matrix-assisted laser desorption/ionization mass spectrometry imaging with laser postionization and immunohistochemistry. RESULTS: During tumor progression, the two tumor models showed divergent trends for all examined CEST contrasts: While glucose- and APT-weighted CEST contrast decreased and creatine-weighted CEST contrast increased over time in the 4T1 model, 67NR tumors exhibited increased glucose- and APT-weighted CEST contrast during disease progression, accompanied by decreased creatine-weighted CEST contrast. Already three days after treatment initiation, CEST contrasts captured response to ICI therapy in both tumor models. CONCLUSION: Multiparametric CEST-MRI enables non-invasive assessment of metabolic signatures of the TME, allowing both for estimation of the degree of tumor malignancy and for assessment of early response to immune checkpoint inhibition.


Subject(s)
Creatine , Neoplasms , Animals , Mice , Immunotherapy , Magnetic Resonance Imaging , Amides , Glucose , Immune Checkpoint Inhibitors
2.
Bioorg Chem ; 131: 106331, 2023 02.
Article in English | MEDLINE | ID: mdl-36587505

ABSTRACT

In order to develop novel inhibitors of the bacterial deacetylase LpxC bearing a substituent to target the UDP binding site of the enzyme, a series of aldotetronic acid-based hydroxamic acids was accessed in chiral pool syntheses starting from 4,6-O-benzylidene-d-glucose and l-arabinitol. The synthesized hydroxamic acids were tested for LpxC inhibitory activity in vitro, revealing benzyl ether 17a ((2S,3S)-4-(benzyloxy)-N,3-dihydroxy-2-[(4-{[4-(morpholinomethyl)phenyl]ethynyl}benzyl)oxy]butanamide) as the most potent LpxC inhibitor. This compound was additionally tested for antibacterial activity against a panel of clinically relevant Gram-negative bacteria, bacterial uptake, and susceptibility to efflux pumps. Molecular docking studies were performed to rationalize the observed structure-activity relationships.


Subject(s)
Amidohydrolases , Anti-Bacterial Agents , Enzyme Inhibitors , Escherichia coli , Amidohydrolases/antagonists & inhibitors , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Bacteria/metabolism , Binding Sites , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Hydroxamic Acids/pharmacology , Hydroxamic Acids/chemistry , Molecular Docking Simulation , Structure-Activity Relationship
3.
Front Chem ; 9: 689850, 2021.
Article in English | MEDLINE | ID: mdl-34504831

ABSTRACT

The biodistribution of medical imaging probes depends on the chemical nature of the probe and the preferred metabolization and excretion routes. Especially targeted probes, which have to reach a certain (sub)cellular destination, have to be guided to the tissue of interest. Therefore, small molecular probes need to exhibit a well-balanced polarity and lipophilicity to maintain an advantageous bioavailability. Labelled antibodies circulate for several days due to their size. To alter the biodistribution behavior of probes, different strategies have been pursued, including utilizing serum albumin as an inherent transport mechanism for small molecules. We describe here the modification of an existing fluorescent RGD mimetic probe targeted to integrin αvß3 with three different albumin binding moieties (ABMs): a diphenylcyclohexyl (DPCH) group, a p-iodophenyl butyric acid (IPBA) and a fatty acid (FA) group with the purpose to identify an optimal ABM for molecular imaging applications. All three modifications result in transient albumin binding and a preservation of the target binding capability. Spectrophotometric measurements applying variable amounts of bovine serum albumin (BSA) reveal considerable differences between the compounds concerning their absorption and emission characteristics and hence their BSA binding mode. In vivo the modified probes were investigated in a murine U87MG glioblastoma xenograft model over the course of 1 wk by fluorescence reflectance imaging (FRI) and fluorescence mediated tomography (FMT). While the unmodified probe was excreted rapidly, the albumin-binding probes were accumulating in tumor tissue for at least 5 days. Considerable differences between the three probes in biodistribution and excretion characteristics were proved, with the DPCH-modified probe showing the highest overall signal intensities, while the FA-modified probe exhibits a low but more specific fluorescent signal. In conclusion, the modification of small molecular RGD mimetics with ABMs can precisely fine-tune probe distribution and offers potential for future clinical applications.

4.
Mol Pharm ; 18(7): 2574-2585, 2021 07 05.
Article in English | MEDLINE | ID: mdl-34048242

ABSTRACT

The biodistribution of molecular imaging probes or tracers mainly depends on the chemical nature of the probe and the preferred metabolization and excretion routes. Small molecules have rather short half-lives while antibodies reside inside the organism for a longer period of time. An excretion via kidneys and bladder is faster than a mainly hepatobiliary elimination. To manipulate the biodistribution behavior of probes, different strategies have been pursued, including utilizing serum albumin as an inherent transport mechanism for small molecules. Here, we modified an existing small molecular fluorescent probe targeted to the endothelin-A receptor (ETAR) with three different albumin-binding moieties to search for an optimal modification strategy. A diphenylcyclohexyl (DPCH) group, a p-iodophenyl butyric acid (IPBA), and a fatty acid (FA) group were attached via amino acid linkers. All three modifications result in transient albumin binding of the developed compounds, as concluded from gel electrophoresis investigations. Spectrophotometric measurements applying variable amounts of bovine, murine, and human serum albumin (BSA, MSA, and HSA) reveal distinct variations of absorption and emission intensities and shifts of their maximum wavelengths. Binding to MSA results in the weakest effects, while binding to HSA leads to the strongest. Cell-based in vitro investigations utilizing ETAR-positive HT-1080 fibrosarcoma and ETAR-negative BT-20 breast adenocarcinoma cells support a retained specific target-binding capacity of the modified compounds and different degrees of unspecific binding. In vivo analysis of a HT-1080 xenograft model in nude mice over the course of 1 week by fluorescence reflectance imaging illustrates noticeable differences between the four examined probes. While the IPBA-modified probe shows the highest absolute signal intensity values, the FA-modified probe exhibits the most favorable tumor-to-organ ratios. In summary, reversible binding to albumin enhances the biological half-life of the designed probes substantially and enables near infrared optical imaging of subcutaneous tumors for several days in vivo. Because the unmodified probe already exhibits reasonable results, the attachment of albumin-binding moieties does not lead to a substantially improved imaging outcome in terms of target-to-background ratios. On the other hand, because the implemented transient albumin binding results in an overall higher amount of probe inside tumor lesions, this strategy might be adaptable for theranostic or therapeutic approaches in a future clinical routine.


Subject(s)
Breast Neoplasms/metabolism , Fibrosarcoma/metabolism , Fluorescent Dyes/metabolism , Molecular Imaging/methods , Molecular Probes/metabolism , Receptor, Endothelin A/chemistry , Serum Albumin/metabolism , Animals , Breast Neoplasms/pathology , Female , Fibrosarcoma/pathology , Fluorescent Dyes/chemistry , Humans , Mice , Mice, Nude , Molecular Probes/chemistry , Optical Imaging , Serum Albumin/chemistry , Tissue Distribution , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...