Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
PLoS One ; 18(11): e0293289, 2023.
Article in English | MEDLINE | ID: mdl-37988360

ABSTRACT

Citizen scientists around the world are collecting data with their smartphones, performing scientific calculations on their home computers, and analyzing images on online platforms. These online citizen science projects are frequently lauded for their potential to revolutionize the scope and scale of data collection and analysis, improve scientific literacy, and democratize science. Yet, despite the attention online citizen science has attracted, it remains unclear how widespread public participation is, how it has changed over time, and how it is geographically distributed. Importantly, the demographic profile of citizen science participants remains uncertain, and thus to what extent their contributions are helping to democratize science. Here, we present the largest quantitative study of participation in citizen science based on online accounts of more than 14 million participants over two decades. We find that the trend of broad rapid growth in online citizen science participation observed in the early 2000s has since diverged by mode of participation, with consistent growth observed in nature sensing, but a decline seen in crowdsourcing and distributed computing. Most citizen science projects, except for nature sensing, are heavily dominated by men, and the vast majority of participants, male and female, have a background in science. The analysis we present here provides, for the first time, a robust 'baseline' to describe global trends in online citizen science participation. These results highlight current challenges and the future potential of citizen science. Beyond presenting our analysis of the collated data, our work identifies multiple metrics for robust examination of public participation in science and, more generally, online crowds. It also points to the limits of quantitative studies in capturing the personal, societal, and historical significance of citizen science.


Subject(s)
Citizen Science , Crowdsourcing , Humans , Male , Female , Community Participation , Data Collection , Demography
2.
Toxicon X ; 9-10: 100071, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34278294

ABSTRACT

The secretive behavior and life history of snakes makes studying their biology, distribution, and the epidemiology of venomous snakebite challenging. One of the most useful, most versatile, and easiest to collect types of biological data are photographs, particularly those that are connected with geographic location and date-time metadata. Photos verify occurrence records, provide data on phenotypes and ecology, and are often used to illustrate new species descriptions, field guides and identification keys, as well as in training humans and computer vision algorithms to identify snakes. We scoured eleven online and two offline sources of snake photos in an attempt to collect as many photos of as many snake species as possible, and attempt to explain some of the inter-species variation in photograph quantity among global regions and taxonomic groups, and with regard to medical importance, human population density, and range size. We collected a total of 725,565 photos-between 1 and 48,696 photos of 3098 of the world's 3879 snake species (79.9%), leaving 781 "most wanted" species with no photos (20.1% of all currently-described species as of the December 2020 release of The Reptile Database). We provide a list of most wanted species sortable by family, continent, authority, and medical importance, and encourage snake photographers worldwide to submit photos and associated metadata, particularly of "missing" species, to the most permanent and useful online archives: The Reptile Database, iNaturalist, and HerpMapper.

3.
Toxicon X, v. 9-10, 100071, jul. 2021
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3902

ABSTRACT

The secretive behavior and life history of snakes makes studying their biology, distribution, and the epidemiology of venomous snakebite challenging. One of the most useful, most versatile, and easiest to collect types of biological data are photographs, particularly those that are connected with geographic location and date-time metadata. Photos verify occurrence records, provide data on phenotypes and ecology, and are often used to illustrate new species descriptions, field guides and identification keys, as well as in training humans and computer vision algorithms to identify snakes. We scoured eleven online and two offline sources of snake photos in an attempt to collect as many photos of as many snake species as possible, and attempt to explain some of the inter-species variation in photograph quantity among global regions and taxonomic groups, and with regard to medical importance, human population density, and range size. We collected a total of 725,565 photos—between 1 and 48,696 photos of 3098 of the world's 3879 snake species (79.9%), leaving 781 “most wanted” species with no photos (20.1% of all currently-described species as of the December 2020 release of The Reptile Database). We provide a list of most wanted species sortable by family, continent, authority, and medical importance, and encourage snake photographers worldwide to submit photos and associated metadata, particularly of “missing” species, to the most permanent and useful online archives: The Reptile Database, iNaturalist, and HerpMapper.

6.
Nat Nanotechnol ; 10(8): 692-5, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26149236

ABSTRACT

The emergence of the field of nanofluidics in the last decade has led to the development of important applications including water desalination, ultrafiltration and osmotic energy conversion. Most applications make use of carbon nanotubes, boron nitride nanotubes, graphene and graphene oxide. In particular, understanding water transport in carbon nanotubes is key for designing ultrafiltration devices and energy-efficient water filters. However, although theoretical studies based on molecular dynamics simulations have revealed many mechanistic features of water transport at the molecular level, further advances in this direction are limited by the fact that the lowest flow velocities accessible by simulations are orders of magnitude higher than those measured experimentally. Here, we extend molecular dynamics studies of water transport through carbon nanotubes to flow velocities comparable with experimental ones using massive crowd-sourced computing power. We observe previously undetected oscillations in the friction force between water and carbon nanotubes and show that these oscillations result from the coupling between confined water molecules and the longitudinal phonon modes of the nanotube. This coupling can enhance the diffusion of confined water by more than 300%. Our results may serve as a theoretical framework for the design of new devices for more efficient water filtration and osmotic energy conversion devices.

7.
Nat Nanotechnol ; 10(5): 480, 2015 May.
Article in English | MEDLINE | ID: mdl-25947964
8.
Phys Rev Lett ; 113(2): 026101, 2014 Jul 11.
Article in English | MEDLINE | ID: mdl-25062213

ABSTRACT

Making small liquid droplets move spontaneously on solid surfaces is a key challenge in lab-on-chip and heat exchanger technologies. Here, we report that a substrate curvature gradient can accelerate micro- and nanodroplets to high speeds on both hydrophilic and hydrophobic substrates. Experiments for microscale water droplets on tapered surfaces show a maximum speed of 0.42 m/s, 2 orders of magnitude higher than with a wettability gradient. We show that the total free energy and driving force exerted on a droplet are determined by the substrate curvature and substrate curvature gradient, respectively. Using molecular dynamics simulations, we predict nanoscale droplets moving spontaneously at over 100 m/s on tapered surfaces.

9.
Sci Rep ; 4: 4875, 2014 May 02.
Article in English | MEDLINE | ID: mdl-24786521

ABSTRACT

Recent experiments on microscopic graphite mesas demonstrate reproducible high-speed microscale superlubricity, even under ambient conditions. Here, we explore the same phenomenon on the nanoscale, by studying a graphene flake sliding on a graphite substrate, using molecular dynamics. We show that superlubricity is punctuated by high-friction transients as the flake rotates through successive crystallographic alignments with the substrate. Further, we introduce two novel routes to suppress frictional scattering and achieve persistent superlubricity. We use graphitic nanoribbons to eliminate frictional scattering by constraining the flake rotation, an approach we call frictional waveguides. We can also effectively suppress frictional scattering by biaxial stretching of the graphitic substrate. These new routes to persistent superlubricity at the nanoscale may guide the design of ultra-low dissipation nanomechanical devices.

10.
Phys Rev Lett ; 110(25): 255504, 2013 Jun 21.
Article in English | MEDLINE | ID: mdl-23829746

ABSTRACT

A sheared microscopic graphite mesa retracts spontaneously to minimize interfacial energy. Using an optical knife-edge technique, we report first measurements of the speeds of such self-retracting motion (SRM) from the mm/s range at room temperature to 25 m/s at 235°C [corrected]. This remarkably high speed is comparable with the upper theoretical limit found for sliding interfaces exhibiting structural superlubricity. We observe a strong temperature dependence of SRM speed which is consistent with a thermally activated mechanism of translational motion that involves successive pinning and depinning events at interfacial defects. The activation energy for depinning is estimated to be 0.1-1 eV.

11.
Phys Rev Lett ; 108(20): 205503, 2012 May 18.
Article in English | MEDLINE | ID: mdl-23003154

ABSTRACT

Upon shearing a microscale lithographically defined graphite mesa, the sheared section retracts spontaneously to minimize interface energy. Here, we demonstrate a sixfold symmetry of the self-retraction and provide a first experimental estimate of the frictional force involved, as direct evidence that the self-retraction is due to superlubricity, where ultralow friction occurs between incommensurate surfaces. The effect is remarkable because it occurs reproducibly under ambient conditions and over a contact area of up to 10×10 µm2, more than 7 orders of magnitude larger than previous scanning-probe-based studies of superlubricity in graphite. By analyzing the sheared interface, we show how the grain structure of highly oriented pyrolitic graphite determines the probability of self-retraction. Our results demonstrate that such self-retraction provides a novel probe of superlubricity, and the robustness of the phenomenon opens the way for practical applications of superlubricity in micromechanical systems.

12.
Nanotechnology ; 22(26): 265706, 2011 Jul 01.
Article in English | MEDLINE | ID: mdl-21576792

ABSTRACT

We present here a method for cleaning intermediate-size (up to 50 nm) contamination from highly oriented pyrolytic graphite and graphene. Electron-beam-induced deposition of carbonaceous material on graphene and graphite surfaces inside a scanning electron microscope, which is difficult to remove by conventional techniques, can be removed by direct mechanical wiping using a graphite nanoeraser, thus drastically reducing the amount of contamination. We discuss potential applications of this cleaning procedure.

13.
Philos Trans A Math Phys Eng Sci ; 363(1833): 1729-42, 2005 Aug 15.
Article in English | MEDLINE | ID: mdl-16099744

ABSTRACT

The state of computer and networking technology today makes the seamless sharing of computing resources on an international or even global scale conceivable. Scientific computing Grids that integrate large, geographically distributed computer clusters and data storage facilities are being developed in several major projects around the world. This article reviews the status of one of these projects, Enabling Grids for E-SciencE, describing the scientific opportunities that such a Grid can provide, while illustrating the scale and complexity of the challenge involved in establishing a scientific infrastructure of this kind.


Subject(s)
Computer Simulation , Informatics/methods , Internet , Mathematical Computing , Models, Biological , Research Design , Research/organization & administration , Science/methods , Europe , Organizational Objectives , Software , Systems Integration , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...