Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 614: 425-435, 2022 May 15.
Article in English | MEDLINE | ID: mdl-35108634

ABSTRACT

Adsorbate molecules present in a reaction mixture may bind to and block catalytic sites. Measurement of the surface coverage of these molecules via adsorption isotherms is critical for modeling and design of catalytic reactions on surfaces. However, it is challenging to measure isotherms in solution in a way that is directly relevant to catalytic activity under reaction conditions, particularly since adsorbates may bind with an enormous range of surface affinity parameters. Here we used the motion of self-propelled catalytic Janus particles, which employ the decomposition of hydrogen peroxide fuel as a propulsion mechanism, to determine the effective surface coverage of thioglycerol, furfural, and ethanol on a platinum surface as a function of concentration in aqueous solution by measuring the decrease in active motion due to the blocking of active sites. For strongly adsorbing thioglycerol, this effective coverage was compared and contrasted to the total adsorbed amount measured using inductively-coupled plasma analysis. Demonstrating the broad applicability of this approach, the surface affinity of the three adsorbates spanned more than four orders of magnitude. For each species, the adsorbate-mediated attenuation of active motion occurred over a wide concentration range and was well-described by a Langmuir isotherm. The strongly interacting thioglycerol had the highest affinity towards the surface (Ka = 15.5 ± 4.3 mM-1) and fully deactivated the active particle motion at surface saturation. Furfural had an intermediate affinity (Ka = 0.42 ± 0.07 mM-1) but did not fully block H2O2 access to the surface at apparent saturation, consistent with a maximum fractional surface coverage of θmax = 0.67. Ethanol exhibited even lower affinity (Ka = 0.0025 ± 2x10-4 mM-1) and its coverage saturated at only θmax = 0.38. Analysis of isotherms at elevated temperatures enabled direct extraction of the enthalpies of adsorption. The degree of surface coverage at adsorbate saturation appeared to correlate with the relative energies of adsorption for the different adsorbate species and was consistent with adsorbate saturation of one of multiple active site populations towards H2O2 decomposition. Moreover, computational investigations into solvent effects on furfural adsorption showed good quantitative agreement with the experimental results. This work leverages unique properties of active particles to explore fundamental catalysis questions and demonstrates a novel paradigm for significant and experimentally accessible multidisciplinary research.


Subject(s)
Hydrogen Peroxide , Adsorption , Catalysis , Solvents/chemistry , Thermodynamics
2.
Proc Natl Acad Sci U S A ; 118(27)2021 07 06.
Article in English | MEDLINE | ID: mdl-34183394

ABSTRACT

Micro/nanoswimmers convert diverse energy sources into directional movement, demonstrating significant promise for biomedical and environmental applications, many of which involve complex, tortuous, or crowded environments. Here, we investigated the transport behavior of self-propelled catalytic Janus particles in a complex interconnected porous void space, where the rate-determining step involves the escape from a cavity and translocation through holes to adjacent cavities. Surprisingly, self-propelled nanoswimmers escaped from cavities more than 20× faster than passive (Brownian) particles, despite the fact that the mobility of nanoswimmers was less than 2× greater than that of passive particles in unconfined bulk liquid. Combining experimental measurements, Monte Carlo simulations, and theoretical calculations, we found that the escape of nanoswimmers was enhanced by nuanced secondary effects of self-propulsion which were amplified in confined environments. In particular, active escape was facilitated by anomalously rapid confined short-time mobility, highly efficient surface-mediated searching for holes, and the effective abolition of entropic and/or electrostatic barriers at the exit hole regions by propulsion forces. The latter mechanism converted the escape process from barrier-limited to search-limited. These findings provide general and important insights into micro/nanoswimmer mobility in complex environments.

3.
ACS Appl Mater Interfaces ; 12(2): 2338-2345, 2020 Jan 15.
Article in English | MEDLINE | ID: mdl-31851487

ABSTRACT

Amphiphilic Janus particles with a catalyst selectively loaded on either the hydrophobic or hydrophilic region are promising candidates for efficient and phase-selective interfacial catalysis. Here, we report the synthesis and characterization of Janus silica particles with a hydrophilic silica domain and a silane-modified hydrophobic domain produced via a wax masking technique. Palladium nanoparticles were regioselectively deposited on the hydrophobic side, and the phase selectivity of the catalytic Janus particles was established through the kinetic studies of benzyl alcohol hydrodeoxygenation (HDO). These studies indicated that the hydrophobic moiety provided nearly 100× the catalytic activity as the hydrophilic side for benzyl alcohol HDO. The reactivity was linked to the anisotropic catalyst design through microscopy of the particles. The catalysts were also used to achieve phase-specific compartmentalized hydrogenation and selective in situ catalytic degradation of a model oily pollutant in a complex oil/water mixture.

SELECTION OF CITATIONS
SEARCH DETAIL
...