Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Negl Trop Dis ; 10(3): e0004569, 2016 Mar.
Article in English | MEDLINE | ID: mdl-27031867

ABSTRACT

Leptospirosis is a zoonosis found worldwide that is caused by a spirochete. The main reservoirs of Leptospira, which presents an asymptomatic infection, are wild rodents, including the brown rat (Rattus norvegicus). Experimental studies of the mechanisms of its renal colonization in rats have previously used an intraperitoneal inoculation route. However, knowledge of rat-rat transmission requires the use of a natural route of inoculation, such as a mucosal or subcutaneous route. We investigated for the first time the effects of subcutaneous and mucosal inoculation routes compared to the reference intraperitoneal route during Leptospira infection in adult rats. Infection characteristics were studied using Leptospira renal isolation, serology, and molecular and histological analyses. Leptospira infection was asymptomatic using each inoculation route, and caused similar antibody production regardless of renal colonization. The observed renal colonization rates were 8 out of 8 rats, 5 out of 8 rats and 1 out of 8 rats for the intraperitoneal, mucosal and subcutaneous inoculation routes, respectively. Thus, among the natural infection routes studied, mucosal inoculation was more efficient for renal colonization associated with urinary excretion than the subcutaneous route and induced a slower-progressing infection than the intraperitoneal route. These results can facilitate understanding of the infection modalities in rats, unlike the epidemiological studies conducted in wild rats. Future studies of other natural inoculation routes in rat models will increase our knowledge of rat-rat disease transmission and allow the investigation of infection kinetics.


Subject(s)
Leptospira/physiology , Leptospirosis/microbiology , Administration, Mucosal , Animals , Injections, Intraperitoneal , Injections, Subcutaneous , Male , Rats , Specific Pathogen-Free Organisms
2.
J Virol ; 77(11): 6430-7, 2003 Jun.
Article in English | MEDLINE | ID: mdl-12743300

ABSTRACT

Lentiviruses have long been considered host-specific pathogens, but several recent observations demonstrated their capacity to conquer new hosts from different species, genera, and families. From these cross-species infections emerged new animal and human infectious diseases. The successful colonization and adaptation of a lentivirus to a nonnatural host depends on unspecific and specific host barriers. Some of those barriers exert a relative control of viral replication (i.e., cytotoxic T-lymphocyte response, viral inhibitory factors), but none of them was found able to totally clear the infection once the retrovirus is fully adapted in its host. In this study we examined the evolution of the host-lentivirus interactions occurring in an experimental animal model of cross-species infection in order to analyze the efficiency of those barriers in preventing the establishment of a persistent infection. Five newborn calves were inoculated with caprine arthritis-encephalitis virus (CAEV), and the evolution of infection was studied for more than 12 months. All the animals seroconverted in the first 0.75 to 1 month following the inoculation and remained seropositive for the remaining time of the experiment. Viral infection was productive during 4 months with isolation of replication competent virus from the blood cells and organs of the early euthanized animals. After 4 months of infection, neither replication-competent virus nor virus genome could be detected in blood cells or in the classical target organs, even after an experimental immunosuppression. No evidence of in vitro restriction of CAEV replication was observed in cells from tissues explanted from organs of these calves. These data provide the demonstration of a natural clearance of lentivirus infection following experimental inoculation of a nonnatural host, enabling perspectives of development of new potential vaccine strategies to fight against lentivirus infections.


Subject(s)
Arthritis-Encephalitis Virus, Caprine/pathogenicity , Cattle Diseases/virology , Lentivirus Infections/veterinary , Animals , Animals, Newborn , Antibodies, Viral/blood , Arthritis-Encephalitis Virus, Caprine/isolation & purification , Cattle , Cattle Diseases/immunology , Cattle Diseases/physiopathology , Cells, Cultured , DNA, Viral/blood , Goats , Lentivirus Infections/immunology , Lentivirus Infections/physiopathology , Lentivirus Infections/virology , Species Specificity , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL
...