Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
ACS Sens ; 7(2): 674-683, 2022 02 25.
Article in English | MEDLINE | ID: mdl-35170958

ABSTRACT

Detection of toxic and flammable gases and volatile organic compounds (VOCs) released from Li-ion batteries during thermal runaway can generate an early warning. A submicron (∼0.15 µm)-thick poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) sensor film is coated on a platinum electrode through a facile aqueous dispersion. The resulting sensor reliably detected different volatile organic compounds (VOCs) released during the early stages of thermal runaway of lithium-ion batteries (LIBs) even at low concentrations. The single-electrode sensor utilizes impedance spectroscopy to measure ethyl methyl carbonate and methyl formate concentrations at 5, 15, and 30 ppm independently and in various combinations using ethanol as a reference. In contrast to DC resistance measurement, which provides a single parameter, impedance spectroscopy provides a wealth of information, including impedance and phase angle at multiple frequencies as well as fitted charge transfer resistance and constant-phase elements. Different analytes influence the measurement of different parameters to varying degrees, enabling distinction using a single sensing material. The response time for ethyl methyl carbonate was measured to be 6 s. Three principal components (PCs) preserve more than 95% of information and efficiently enable discrimination of different classes of analytes. Application of low-power PEDOT:PSS-based gas sensors will facilitate cost-effective early detection of VOCs and provide early warning to battery management systems (BMS), potentially mitigating catastrophic thermal runaway events.


Subject(s)
Lithium , Volatile Organic Compounds , Electric Power Supplies , Electrodes , Gases/chemistry , Ions , Volatile Organic Compounds/chemistry
2.
Inorg Chem ; 60(6): 3593-3603, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33615790

ABSTRACT

Transition-metal oxide nanostructured materials are potentially attractive alternatives as anodes for Li ion batteries and as photocatalysts. Combining the structural and thermal stability of titanium oxides with the relatively high oxidation potential and charge capacity of molybdenum(VI) oxides was the motivation for a search for approaches to mixed oxides of these two metals. Challenges in traditional synthetic methods for such materials made development of a soft chemistry single-source precursor pathway our priority. A series of bimetallic Ti-Mo alkoxides were produced by reactions of homometallic species in a 1:1 ratio. Thermal solution reduction with subsequent reoxidation by dry air offered in minor yields Ti2Mo2O4(OMe)6(OiPr)6 (1) by the interaction of Ti(OiPr)4 with MoO(OMe)4 and Ti6Mo6O22(OiPr)16(iPrOH)2 (2) by the reaction of Ti(OiPr)4 with MoO(OiPr)4. An attempt to improve the yield of 2 by microhydrolysis, using the addition of stoichiometric amounts of water, resulted in the formation with high yield of a different complex, Mo7Ti7+xO31+x(OiPr)8+2x (3). Controlled thermal decomposition of 1-3 in air resulted in their transformation into the phase TiMoO5 (4) with an orthorhombic structure in space group Pnma, as determined by a Rietveld refinement. The electrochemical characteristics of 4 and its chemical transformation on Li insertion were investigated, showing its potential as a promising anode material for Li ion batteries for the first time. A lower charge capacity and lower stability were observed for its application as an anode for a Na ion battery.

3.
ACS Macro Lett ; 7(4): 504-508, 2018 Apr 17.
Article in English | MEDLINE | ID: mdl-35619350

ABSTRACT

Quasi-elastic neutron scattering experiments on mixtures of poly(ethylene oxide) and lithium bis(trifluoromethane)sulfonimide salt, a standard polymer electrolyte, led to the quantification of the effect of salt on segmental dynamics in the 1-10 Å length scale. The monomeric friction coefficient characterizing segmental dynamics on these length scales increases exponentially with salt concentration. More importantly, we find that this change in monomeric friction alone is responsible for all of the observed nonlinearity in the dependence of ionic conductivity on salt concentration. Our analysis leads to a surprisingly simple relationship between macroscopic ion transport in polymers and dynamics at monomeric length scales.

SELECTION OF CITATIONS
SEARCH DETAIL
...